Journal of Graphics ›› 2023, Vol. 44 ›› Issue (1): 166-176.DOI: 10.11996/JG.j.2095-302X.2023010166
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
					
													FAN Zhen(
), LIU Xiao-jing(
), LI Xiao-bo, CUI Ya-chao
												  
						
						
						
					
				
Received:2022-06-16
															
							
																	Revised:2022-07-20
															
							
															
							
																	Online:2023-10-31
															
							
																	Published:2023-02-16
															
						Contact:
								LIU Xiao-jing   
													About author:FAN Zhen (1998-), master student. His main research interests cover computer vision and artificial intelligence. E-mail:772591989@qq.com				
													Supported by:CLC Number:
FAN Zhen, LIU Xiao-jing, LI Xiao-bo, CUI Ya-chao. A homography estimation method robust to illumination and occlusion[J]. Journal of Graphics, 2023, 44(1): 166-176.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023010166
																													Fig. 3 Examples of different convolutions ((a) Ordinary convolution; (b) General deformation convolution; (c) Dilated convolution; (d) Special deformation convolution)
																													Fig. 4 S-COCO dataset generation algorithm ((a) Randomly obtain a square image block named Patch A from a picture; (b) Randomly perturb 4 corners of the square; (c) Calculate HAB according to (Δxi,Δyi) from step 2; (d) Calculate the inverse HAB matrix and apply it to the whole picture, and then obtain square image blocks of the same size at the same location)
																													Fig. 6 Schematic diagram of occlusion shape insertion strategy ((a) Image pairs generated by the original dataset generation algorithm; (b) Image pairs generated by adding random occlusion insertion strategy; (c) Specific process of occlusion insertion strategy)
| 因素 | 数据集 | ||
|---|---|---|---|
| S-COCO | PDS-COCO | PDSO-COCO | |
| 光照 | × | √ | √ | 
| 噪声 | × | √ | √ | 
| 位移 | √ | √ | √ | 
| 视差 | × | √ | √ | 
| 遮挡 | × | × | √ | 
Table 1 Comparison of PDSO-COCO with other synthetic dataset
| 因素 | 数据集 | ||
|---|---|---|---|
| S-COCO | PDS-COCO | PDSO-COCO | |
| 光照 | × | √ | √ | 
| 噪声 | × | √ | √ | 
| 位移 | √ | √ | √ | 
| 视差 | × | √ | √ | 
| 遮挡 | × | × | √ | 
| 排名 | 方法 | |||||
|---|---|---|---|---|---|---|
| SIFT+RANSAC | PFNet | HomographyNet | CAUDHEN | UDHEN | Ours | |
| Top 0~30% | 0.533 | 2.013 | 3.277 | 14.867 | 2.227 | 2.243 | 
| 31%~60% | 1.174 | 3.768 | 4.919 | 18.066 | 3.361 | 2.671 | 
| 61%~100% | 19.017 | 5.437 | 7.688 | 23.421 | 6.374 | 3.095 | 
| 平均 | 9.738 | 3.857 | 5.673 | 18.798 | 4.176 | 2.781 | 
Table 2 RMSE of each model on WarpedMS-COCO dataset
| 排名 | 方法 | |||||
|---|---|---|---|---|---|---|
| SIFT+RANSAC | PFNet | HomographyNet | CAUDHEN | UDHEN | Ours | |
| Top 0~30% | 0.533 | 2.013 | 3.277 | 14.867 | 2.227 | 2.243 | 
| 31%~60% | 1.174 | 3.768 | 4.919 | 18.066 | 3.361 | 2.671 | 
| 61%~100% | 19.017 | 5.437 | 7.688 | 23.421 | 6.374 | 3.095 | 
| 平均 | 9.738 | 3.857 | 5.673 | 18.798 | 4.176 | 2.781 | 
																													Fig. 8 Description of the overlap rate of the pictures used for stitching ((a) Image pairs with very low overlap; (b) Image pairs with relatively high overlap)
| 排名 | 方法 | |||||
|---|---|---|---|---|---|---|
| SIFT+RANSAC | PFNet | HomographyNet | CAUDHEN | UDHEN | Ours | |
| Top 0~30% | 1133.175 | 962.593 | 898.766 | - | 933.278 | 1074.563 | 
| 31%~60% | 721.158 | 654.946 | 578.645 | - | 664.295 | 698.279 | 
| 61%~100% | 425.337 | 392.551 | 367.527 | - | 381.527 | 474.325 | 
| 平均 | 724.475 | 645.341 | 590.234 | - | 632.784 | 715.443 | 
Table 3 Laplacian of pictures assembled from various models on the real dataset
| 排名 | 方法 | |||||
|---|---|---|---|---|---|---|
| SIFT+RANSAC | PFNet | HomographyNet | CAUDHEN | UDHEN | Ours | |
| Top 0~30% | 1133.175 | 962.593 | 898.766 | - | 933.278 | 1074.563 | 
| 31%~60% | 721.158 | 654.946 | 578.645 | - | 664.295 | 698.279 | 
| 61%~100% | 425.337 | 392.551 | 367.527 | - | 381.527 | 474.325 | 
| 平均 | 724.475 | 645.341 | 590.234 | - | 632.784 | 715.443 | 
| 排名 | 回传双向单应性估计 平均光度损失  |  回传普通 光度损失  | 
|---|---|---|
| Top 0~30% | 2.243 | 2.218 | 
| 31%~60% | 2.671 | 3.074 | 
| 61%~100% | 3.095 | 5.983 | 
| 平均 | 2.781 | 4.056 | 
Table 4 RMSE of the model on WarpedMS-COCO dataset when different loss functions are backpropagated
| 排名 | 回传双向单应性估计 平均光度损失  |  回传普通 光度损失  | 
|---|---|---|
| Top 0~30% | 2.243 | 2.218 | 
| 31%~60% | 2.671 | 3.074 | 
| 61%~100% | 3.095 | 5.983 | 
| 平均 | 2.781 | 4.056 | 
| 排名 | 回传双向单应性估计 平均光度损失  |  回传普通 光度损失  | 
|---|---|---|
| Top 0~30% | 1074.563 | 974.263 | 
| 31%~60% | 698.279 | 652.379 | 
| 61%~100% | 474.325 | 399.281 | 
| 平均 | 715.443 | 649.883 | 
Table 5 Laplacian of images obtained from image stitching using the homography estimated by model on real dataset when different loss functions are backpropagated
| 排名 | 回传双向单应性估计 平均光度损失  |  回传普通 光度损失  | 
|---|---|---|
| Top 0~30% | 1074.563 | 974.263 | 
| 31%~60% | 698.279 | 652.379 | 
| 61%~100% | 474.325 | 399.281 | 
| 平均 | 715.443 | 649.883 | 
| 排名 | 引入STN与 变形卷积  |  未引入STN与 变形卷积  | 
|---|---|---|
| Top 0~30% | 2.243 | 2.219 | 
| 31%~60% | 2.671 | 3.278 | 
| 61%~100% | 3.095 | 6.221 | 
| 平均 | 2.781 | 4.109 | 
Table 6 RMSE of model on WarpedMS-COCO dataset with and without STN and deformation convolution
| 排名 | 引入STN与 变形卷积  |  未引入STN与 变形卷积  | 
|---|---|---|
| Top 0~30% | 2.243 | 2.219 | 
| 31%~60% | 2.671 | 3.278 | 
| 61%~100% | 3.095 | 6.221 | 
| 平均 | 2.781 | 4.109 | 
| 排名 | 引入STN与 变形卷积  |  未引入STN与 变形卷积  | 
|---|---|---|
| Top 0~30% | 1074.563 | 946.674 | 
| 31%~60% | 698.279 | 668.151 | 
| 61%~100% | 474.325 | 392.463 | 
| 平均 | 715.443 | 647.386 | 
Table 7 Laplacian of images obtained from image stitching using the homography estimated by model on real dataset when with and without STN and deformation convolution
| 排名 | 引入STN与 变形卷积  |  未引入STN与 变形卷积  | 
|---|---|---|
| Top 0~30% | 1074.563 | 946.674 | 
| 31%~60% | 698.279 | 668.151 | 
| 61%~100% | 474.325 | 392.463 | 
| 平均 | 715.443 | 647.386 | 
| [1] | LE H, LIU F, ZHANG S, et al. Deep homography estimation for dynamic scenes[C]//202 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 7652-7661. | 
| [2] |  
											 BAKER S, MATTHEWS I. Lucas-kanade 20 years on: a unifying framework[J]. International Journal of Computer Vision, 2004, 56(3): 221-255. 
																							 DOI URL  | 
										
| [3] | LOWE D G. Object recognition from local scale-invariant features[C]//The 7th IEEE International Conference on Computer Vision. New York: IEEE Press, 1999: 1150-1157. | 
| [4] | RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]//2011 IEEE International Conference on Computer Vision. New York: IEEE Press, 2011: 2564-2571. | 
| [5] | BAY H, TUYTELAARS T, GOOL L. Surf: speeded up robust features[C]//European Conference on Computer Vision. Cham: Springer International Publishin, 2006: 404-417. | 
| [6] | BARONE F, MARRAZZO M, OTON C J. Camera calibration with weighted direct linear transformation and anisotropic uncertainties of image control points[J]. Sensors, 2020, 20(4): E1175. | 
| [7] | DETONE D, MALISIEWICZ T, RABINOVICH A. Deep image homography estimation[EB/OL]. [2022-01-20]. https://doi.org/10.48550/arXiv.1606.03798. | 
| [8] | ZENG R, DENMAN S, SRIDHARAN S, et al. Rethinking planar homography estimation using perspective fields[C]// Asian Conference on Computer Vision. Cham: Springer International Publishin, 2018: 571-586. | 
| [9] | NGUYEN T, CHEN S, SHIVAKUMAR S. Unsupervised deep homography: a fast and robust homography estimation model[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 2346-2353. | 
| [10] | ZHANG J, WANG C, LIU S, et al. Content-aware unsupervised deep homography estimation[C]//European Conference on Computer Vision. Cham: Springer International Publishin, 2020: 653-669. | 
| [11] | ZHANG S, NG W, ZHANG J, et al. Human activity recognition using radial basis function neural network trained via a minimization of localized generalization error[C]// International Conference on Ubiquitous Computing and Ambient Intelligence. Cham: Springer International Publishin, 2017: 498-507. | 
| [12] |  
											 EVANGELIDIS G D, PSARAKIS E Z. Parametric image alignment using enhanced correlation coefficient maximization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(10): 1858-1865. 
																							 DOI PMID  | 
										
| [13] |  
											 FISCHLER M, BOLLES R. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395. 
																							 DOI URL  | 
										
| [14] | BARATH D, MATAS J, NOSKOVA J. MAGSAC: marginalizing sample consensus[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 10189-10197. | 
| [15] | JADERBERG M, SIMONYAN K, ZISSERMAN A. Spatial transformer networks[C]//Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2015: 2017-2025. | 
| [16] | DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]//2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 764-773. | 
| [17] | HE K M, SUN J. Convolutional neural networks at constrained time cost[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2015: 5353-5360. | 
| [18] | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 770-778. | 
| [19] | GODARD C, AODHA O M, BROSTOW G J. Unsupervised monocular depth estimation with left-right consistency[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 6602-6611. | 
| [20] | AMIRI A J, YAN LOO S, ZHANG H. Semi-supervised monocular depth estimation with left-right consistency using deep neural network[C]// 2019 IEEE International Conference on Robotics and Biomimetics. New York: IEEE Press, 2019: 602-607. | 
| [21] | KOGUCIUK D, ARANI E, ZONOOZ B. Perceptual loss for robust unsupervised homography estimation[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). New York: IEEE Press, 2021: 4269-4278. | 
| [22] |  
											 NIE L, LIN C Y, LIAO K, et al.  Unsupervised deep image stitching: reconstructing stitched features to images[J]. IEEE Transactions on Image Processing, 2021, 30: 6184-6197. 
																							 DOI URL  | 
										
| [23] |  
											 CHEN Y, GAO Y. Image denoising via steerable directional Laplacian regularizer[J]. Circuits, Systems, and Signal Processing, 2021, 40(12): 6265-6283. 
																							 DOI  | 
										
| [24] |  
											 LI Z G, SHU H Y, ZHENG C B. Multi-scale single image dehazing using Laplacian and Gaussian Pyramids[J]. IEEE Transactions on Image Processing, 2021, 30: 9270-9279. 
																							 DOI URL  | 
										
| [1] | YANG Chen-cheng, DONG Xiu-cheng, HOU Bing, ZHANG Dang-cheng, XIANG Xian-ming, FENG Qi-ming. Reference based transformer texture migrates depth images super resolution reconstruction [J]. Journal of Graphics, 2023, 44(5): 861-867. | 
| [2] | DANG Hong-she, XU Huai-biao, ZHANG Xuan-de. Deep learning stereo matching algorithm fusing structural information [J]. Journal of Graphics, 2023, 44(5): 899-906. | 
| [3] | ZHAI Yong-jie, GUO Cong-bin, WANG Qian-ming, ZHAO Kuan, BAI Yun-shan, ZHANG Ji. Multi-fitting detection method for transmission lines based on implicit spatial knowledge fusion [J]. Journal of Graphics, 2023, 44(5): 918-927. | 
| [4] | YANG Hong-ju, GAO Min, ZHANG Chang-you, BO Wen, WU Wen-jia, CAO Fu-yuan. A local optimization generation model for image inpainting [J]. Journal of Graphics, 2023, 44(5): 955-965. | 
| [5] | SONG Huan-sheng, WEN Ya, SUN Shi-jie, SONG Xiang-yu, ZHANG Chao-yang, LI Xu. Tunnel fire detection based on improved student-teacher network [J]. Journal of Graphics, 2023, 44(5): 978-987. | 
| [6] | BI Chun-yan, LIU Yue. A survey of video human action recognition based on deep learning [J]. Journal of Graphics, 2023, 44(4): 625-639. | 
| [7] | CAO Yi-qin, ZHOU Yi-wei, XU Lu. A real-time metallic surface defect detection algorithm based on E-YOLOX [J]. Journal of Graphics, 2023, 44(4): 677-690. | 
| [8] | SHAO Jun-qi, QIAN Wen-hua, XU Qi-hao. Landscape image generation based on conditional residual generative adversarial network [J]. Journal of Graphics, 2023, 44(4): 710-717. | 
| [9] | YU Wei-qun, LIU Jia-tao, ZHANG Ya-ping. Monocular depth estimation based on Laplacian pyramid with attention fusion [J]. Journal of Graphics, 2023, 44(4): 728-738. | 
| [10] | GUO Yin-hong, WANG Li-chun, LI Shuang. Image feature matching based on repeatability and specificity constraints [J]. Journal of Graphics, 2023, 44(4): 739-746. | 
| [11] | MAO Ai-kun, LIU Xin-ming, CHEN Wen-zhuang, SONG Shao-lou. Improved substation instrument target detection method for YOLOv5 algorithm [J]. Journal of Graphics, 2023, 44(3): 448-455. | 
| [12] | WANG Jia-jing, WANG Chen, ZHU Yuan-yuan, WANG Xiao-mei. Graph element detection matching based on Republic of China banknotes [J]. Journal of Graphics, 2023, 44(3): 492-501. | 
| [13] | YANG Liu, WU Xiao-qun. 3D shape completion via deep learning: a method survey [J]. Journal of Graphics, 2023, 44(2): 201-215. | 
| [14] | ZENG Wu, ZHU Heng-liang, XING Shu-li, LIN Jiang-hong, MAO Guo-jun. Saliency detection-guided for image data augmentation [J]. Journal of Graphics, 2023, 44(2): 260-270. | 
| [15] | FENG Zun-deng, WANG Hong-yuan, LIN Long, SUN Bo-yan, CHEN Hai-qin. Unsupervised person re-identification with multi-branch attention network and similarity learning strategy [J]. Journal of Graphics, 2023, 44(2): 280-290. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||