Journal of Graphics ›› 2023, Vol. 44 ›› Issue (2): 335-345.DOI: 10.11996/JG.j.2095-302X.2023020335
Previous Articles Next Articles
					
													CAO Yi-qin1(
), WU Ming-lin1, XU Lu2
												  
						
						
						
					
				
Received:2022-06-17
															
							
															
							
																	Accepted:2022-10-07
															
							
																	Online:2023-04-30
															
							
																	Published:2023-05-01
															
						About author:CAO Yi-qin (1964-), professor, master. His main research interests cover digital image processing and pattern recognition. E-mail:yqcao@ecjtu.edu.cn				
													Supported by:CLC Number:
CAO Yi-qin, WU Ming-lin, XU Lu. Steel surface defect detection based on improved YOLOv5 algorithm[J]. Journal of Graphics, 2023, 44(2): 335-345.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023020335
| 类别 | 个数 | 
|---|---|
| CR | 479 | 
| IN | 741 | 
| PA | 649 | 
| PS | 292 | 
| RS | 435 | 
| SC | 395 | 
Table 1 Label distribution of the training dataset
| 类别 | 个数 | 
|---|---|
| CR | 479 | 
| IN | 741 | 
| PA | 649 | 
| PS | 292 | 
| RS | 435 | 
| SC | 395 | 
| 名称 | 参数 | 
|---|---|
| GPU | RTX3060Ti-12 G | 
| CPU | Intel(R) Core(TM) i7-10875H CPU @2.30 GHz | 
| 操作系统 | Windows10 | 
| 深度学习框架 | Pytorch 1.9.1+cuda10.2 | 
| 编译软件 | PyCharm | 
Table 2 The hardware and software configuration of the experimental environment
| 名称 | 参数 | 
|---|---|
| GPU | RTX3060Ti-12 G | 
| CPU | Intel(R) Core(TM) i7-10875H CPU @2.30 GHz | 
| 操作系统 | Windows10 | 
| 深度学习框架 | Pytorch 1.9.1+cuda10.2 | 
| 编译软件 | PyCharm | 
| 算法 | mAP | FPS | Params (M) | 
|---|---|---|---|
| SSD | 0.507 | 63.30 | 24.4 | 
| Cascade R-CNN | 0.596 | 37.00 | 107.0 | 
| RetinaNet | 0.617 | 42.85 | 28.5 | 
| YOLOv3 | 0.655 | 55.00 | 63.0 | 
| 文献[16] | 0.676 | 51.60 | - | 
| YOLOX(s) | 0.695 | 102.00 | 9.0 | 
| YOLOX(m) | 0.701 | 87.90 | 25.3 | 
| YOLOv5(m) | 0.707 | 75.10 | 21.2 | 
| 本文 | 0.741 | 75.00 | 23.9 | 
| YOLOv6(s) | 0.706 | 121.00 | 17.2 | 
| YOLOv7(tiny) | 0.735 | 165.00 | 6.2 | 
| YOLOv7 | 0.768 | 138.00 | 36.9 | 
Table 3 Comparative experimental results
| 算法 | mAP | FPS | Params (M) | 
|---|---|---|---|
| SSD | 0.507 | 63.30 | 24.4 | 
| Cascade R-CNN | 0.596 | 37.00 | 107.0 | 
| RetinaNet | 0.617 | 42.85 | 28.5 | 
| YOLOv3 | 0.655 | 55.00 | 63.0 | 
| 文献[16] | 0.676 | 51.60 | - | 
| YOLOX(s) | 0.695 | 102.00 | 9.0 | 
| YOLOX(m) | 0.701 | 87.90 | 25.3 | 
| YOLOv5(m) | 0.707 | 75.10 | 21.2 | 
| 本文 | 0.741 | 75.00 | 23.9 | 
| YOLOv6(s) | 0.706 | 121.00 | 17.2 | 
| YOLOv7(tiny) | 0.735 | 165.00 | 6.2 | 
| YOLOv7 | 0.768 | 138.00 | 36.9 | 
| 算法 | mAP | FPS | 
|---|---|---|
| YOLOv5s | 0.840 | 96.2 | 
| 本文(s) | 0.881 | 96.3 | 
| YOLOv5m | 0.892 | 75.1 | 
| 本文(m) | 0.919 | 75.0 | 
| YOLOv5l | 0.923 | 61.6 | 
| 本文(l) | 0.936 | 61.4 | 
| YOLOv5x | 0.945 | 51.9 | 
| 本文(x) | 0.959 | 51.6 | 
Table 4 Experimental results of the YOLOv5 algorithm of different sizes on the VOC2012 dataset
| 算法 | mAP | FPS | 
|---|---|---|
| YOLOv5s | 0.840 | 96.2 | 
| 本文(s) | 0.881 | 96.3 | 
| YOLOv5m | 0.892 | 75.1 | 
| 本文(m) | 0.919 | 75.0 | 
| YOLOv5l | 0.923 | 61.6 | 
| 本文(l) | 0.936 | 61.4 | 
| YOLOv5x | 0.945 | 51.9 | 
| 本文(x) | 0.959 | 51.6 | 
| SPP_Res | C3_MHSA | 多层融合 | AP | mAP | |||||
|---|---|---|---|---|---|---|---|---|---|
| CR | IN | PA | PS | RS | SC | ||||
| - | - | - | 0.225 | 0.848 | 0.888 | 0.780 | 0.631 | 0.869 | 0.707 | 
| √ | - | - | 0.248 | 0.853 | 0.891 | 0.782 | 0.628 | 0.872 | 0.712 | 
| - | √ | - | 0.284 | 0.862 | 0.911 | 0.809 | 0.639 | 0.881 | 0.731 | 
| - | - | √ | 0.303 | 0.856 | 0.893 | 0.795 | 0.633 | 0.876 | 0.726 | 
| √ | √ | - | 0.298 | 0.863 | 0.915 | 0.815 | 0.641 | 0.882 | 0.735 | 
| √ | - | √ | 0.315 | 0.869 | 0.894 | 0.799 | 0.639 | 0.881 | 0.733 | 
| - | √ | √ | 0.314 | 0.861 | 0.911 | 0.819 | 0.642 | 0.883 | 0.738 | 
| √ | √ | √ | 0.323 | 0.873 | 0.896 | 0.827 | 0.643 | 0.884 | 0.741 | 
Table 5 Ablation study experiments with improved strategies
| SPP_Res | C3_MHSA | 多层融合 | AP | mAP | |||||
|---|---|---|---|---|---|---|---|---|---|
| CR | IN | PA | PS | RS | SC | ||||
| - | - | - | 0.225 | 0.848 | 0.888 | 0.780 | 0.631 | 0.869 | 0.707 | 
| √ | - | - | 0.248 | 0.853 | 0.891 | 0.782 | 0.628 | 0.872 | 0.712 | 
| - | √ | - | 0.284 | 0.862 | 0.911 | 0.809 | 0.639 | 0.881 | 0.731 | 
| - | - | √ | 0.303 | 0.856 | 0.893 | 0.795 | 0.633 | 0.876 | 0.726 | 
| √ | √ | - | 0.298 | 0.863 | 0.915 | 0.815 | 0.641 | 0.882 | 0.735 | 
| √ | - | √ | 0.315 | 0.869 | 0.894 | 0.799 | 0.639 | 0.881 | 0.733 | 
| - | √ | √ | 0.314 | 0.861 | 0.911 | 0.819 | 0.642 | 0.883 | 0.738 | 
| √ | √ | √ | 0.323 | 0.873 | 0.896 | 0.827 | 0.643 | 0.884 | 0.741 | 
| [1] | MAO T Q, REN L R, YUAN F Q, et al. Defect recognition method based on HOG and SVM for drone inspection images of power transmission line[C]// 2019 International Conference on High Performance Big Data and Intelligent Systems. New York: IEEE Press, 2019: 254-257. | 
| [2] |  
											 CHU M X, GONG R F, GAO S, et al.  Steel surface defects recognition based on multi-type statistical features and enhanced twin support vector machine[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 171: 140-150. 
																							 DOI URL  | 
										
| [3] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2014: 580-587. | 
| [4] | GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision. New York: IEEE Press, 2016: 1440-1448. | 
| [5] |  
											 REN S Q, HE K M, GIRSHICK R, et al.  Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. 
																							 DOI PMID  | 
										
| [6] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788. | 
| [7] | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 6517-6525. | 
| [8] | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2022-05-17]. https://arxiv.org/abs/1804.02767. | 
| [9] |  
											 FU G Z, SUN P Z, ZHU W B, et al.  A deep-learning-based approach for fast and robust steel surface defects classification[J]. Optics and Lasers in Engineering, 2019, 121: 397-405. 
																							 DOI URL  | 
										
| [10] | LV X M, DUAN F J, JIANG J J, et al. Deep metallic surface defect detection: the new benchmark and detection network[J]. Sensors: Basel, Switzerland, 2020, 20(6): 1562. | 
| [11] | VANNOCCI M, RITACCO A, CASTELLANO A, et al. Flatness defect detection and classification in hot rolled steel strips using convolutional neural networks[M]// Advances in Computational Intelligence. Cham: Springer International Publishing, 2019: 220-234. | 
| [12] | HAN C J, LI G Y, LIU Z. Two-stage edge reuse network for salient object detection of strip steel surface defects[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-12. | 
| [13] | 王海云, 王剑平, 罗付华. 融合多层次特征Faster R-CNN的金属板带材表面缺陷检测研究[J]. 机械科学与技术, 2021, 40(2) : 262-269. | 
| WANG H Y, WANG J P, LUO F H. Study on surface defect detection of metal sheet and strip using faster R-CNN with multilevel feature[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 262-269. (in Chinese) | |
| [14] | 代小红, 陈华江, 朱超平. 一种基于改进Faster RCNN的金属材料工件表面缺陷检测与实现研究[J]. 表面技术, 2020, 49(10): 362-371. | 
| DAI X H, CHEN H J, ZHU C P. Surface defect detection and realization of metal workpiece based on improved faster RCNN[J]. Surface Technology, 2020, 49(10): 362-371. (in Chinese) | |
| [15] | LI J Y, SU Z F, GENG J H, et al. Real-time detection of steel strip surface defects based on improved YOLO detection network[J]. IFAC-PapersOnLine, 2018, 51(21): 76-81. | 
| [16] |  
											 程婧怡, 段先华, 朱伟. 改进YOLOv3的金属表面缺陷检测研究[J]. 计算机工程与应用, 2021, 57(19): 252-258. 
																							 DOI  | 
										
|  
											 CHENG J Y, DUAN X H, ZHU W. Research on metal surface defect detection by improved YOLOv3[J]. Computer Engineering and Applications, 2021, 57(19): 252-258. (in Chinese) 
																							 DOI  | 
										|
| [17] |  
											 KOU X P, LIU S J, CHENG K Q, et al.  Development of a YOLO-V3-based model for detecting defects on steel strip surface[J]. Measurement, 2021, 182: 109454. 
																							 DOI URL  | 
										
| [18] |  
											 王杨, 曹铁勇, 杨吉斌, 等. 基于YOLO v5算法的迷彩伪装目标检测技术研究[J]. 计算机科学, 2021, 48(10): 226-232. 
																							 DOI  | 
										
|  
											 WANG Y, CAO T Y, YANG J B, et al.  Camouflaged object detection based on improved YOLO v5 algorithm[J]. Computer Science, 2021, 48(10): 226-232. (in Chinese) 
																							 DOI  | 
										|
| [19] | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 936-944. | 
| [20] | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 8759-8768. | 
| [21] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 770-778. | 
| [22] | RAMACHANDRAN P, PARMAR N, VASWANI A, et al. Stand-alone self-attention in vision models[EB/OL]. [2022-05-17]. 1906. 05909. https://arxiv.org/abs/1906.05909. | 
| [23] | ZHAO H S, JIA J Y, KOLTUN V. Exploring self-attention for image recognition[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 10073-10082. | 
| [24] | SRINIVAS A, LIN T Y, PARMAR N, et al. Bottleneck transformers for visual recognition[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 16514-16524. | 
| [25] | XIE E Z, WANG W H, YU Z D, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[J]. Advances in Neural Information Processing Systems, 2021, 34: 12077-12090. | 
| [1] | 
														LI Li-xia , WANG Xin, WANG Jun , ZHANG You-yuan. 
														
															 
	Small object detection algorithm in UAV image based on
feature fusion and attention mechanism
 
														[J]. Journal of Graphics, 2023, 44(4): 658-666.
													 | 
												
| [2] | 
														HAO Shuai, ZHAO Xin-sheng, MA Xu, ZHANG Xu, HE Tian, HOU Li-xiang. 
														
															 
	Multi-class defect target detection method for transmission lines
based on TR-YOLOv5 
 
														[J]. Journal of Graphics, 2023, 44(4): 667-676.
													 | 
												
| [3] | 
														CAO Yi-qin , ZHOU Yi-wei , XU Lu. 
														
															 
	A real-time metallic surface defect detection algorithm based on E-YOLOX
 
														[J]. Journal of Graphics, 2023, 44(4): 677-690.
													 | 
												
| [4] | HU Xin, ZHOU Yun-qiang, XIAO Jian, YANG Jie. Surface defect detection of threaded steel based on improved YOLOv5 [J]. Journal of Graphics, 2023, 44(3): 427-437. | 
| [5] | LI Gang, ZHANG Yun-tao, WANG Wen-kai, ZHANG Dong-yang. Defect detection method of transmission line bolts based on DETR and prior knowledge fusion [J]. Journal of Graphics, 2023, 44(3): 438-447. | 
| [6] | MAO Ai-kun, LIU Xin-ming, CHEN Wen-zhuang, SONG Shao-lou. Improved substation instrument target detection method for YOLOv5 algorithm [J]. Journal of Graphics, 2023, 44(3): 448-455. | 
| [7] | CHEN Gang, ZHANG Pei-ji, GONG Dong-dong, YU Jun-qing. Research on safety clothing detection method for surveillance video of thermal power plant [J]. Journal of Graphics, 2023, 44(2): 291-297. | 
| [8] | ZHANG Wei-kang, SUN Hao, CHEN Xin-kai, LI Xu-bing, YAO Li-gang, DONG Hui. Research on weed detection in vegetable seedling fields based on the improved YOLOv5 intelligent weeding robot [J]. Journal of Graphics, 2023, 44(2): 346-356. | 
| [9] | LI Xiao-bo , LI Yang-gui, GUO Ning , FAN Zhen. Mask detection algorithm based on YOLOv5 integrating attention mechanism [J]. Journal of Graphics, 2023, 44(1): 16-25. | 
| [10] | PI Jun, LIU Yu-heng, LI Jiu-hao. Research on lightweight forest fire detection algorithm based on YOLOv5s [J]. Journal of Graphics, 2023, 44(1): 26-32. | 
| [11] | ZHAO Lu-lu , WANG Xue-ying , ZHANG Yi , ZHANG Mei-yue. Vehicle target detection based on YOLOv5s fusion SENet [J]. Journal of Graphics, 2022, 43(5): 776-782. | 
| [12] | WU Li-zhan, WANG Xia-li, ZHANG Qian, WANG Wei-hao, LI Chao . An object detection method of falling person based on optimized YOLOv5s [J]. Journal of Graphics, 2022, 43(5): 791-802. | 
| [13] | HU Hai-tao , DU Hao-chen , WANG Su-qin , SHI Min , ZHU Deng-ming, . Improved YOLOX method for detecting surface defects of drug blister aluminum foil [J]. Journal of Graphics, 2022, 43(5): 803-814. | 
| [14] | HE Guo-zhong, LIANG Yu. PCB defect detection based on convolutional neural network [J]. Journal of Graphics, 2022, 43(1): 21-27. | 
| [15] | DU Chao, LIU Gui-hua . Improved VGG Neural Network Applied to Defect Detection of Diode Glass Bulb Image [J]. Journal of Graphics, 2019, 40(6): 1087-1092. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||