Journal of Graphics ›› 2024, Vol. 45 ›› Issue (4): 670-682.DOI: 10.11996/JG.j.2095-302X.2024040670
• Image Processing and Computer Vision • Previous Articles Next Articles
LUO Zhihui1(), HU Haitao1,2, MA Xiaofeng1, CHENG Wengang1,2(
)
Received:
2024-03-07
Accepted:
2024-06-20
Online:
2024-08-31
Published:
2024-09-03
Contact:
CHENG Wengang
About author:
First author contact:LUO Zhihui (1999-), master student. His main research interest covers cross-modality person re-identification. E-mail:zhluo@ncepu.edu.cn
Supported by:
CLC Number:
LUO Zhihui, HU Haitao, MA Xiaofeng, CHENG Wengang. A network based on the homogeneous middle modality for cross-modality person re-identification[J]. Journal of Graphics, 2024, 45(4): 670-682.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024040670
Fig. 1 Transformer cross-modal person re-identification framework based on the Homogeneous Middle Modality ((a) Architecture of the proposed network; (b) Transformer feature extraction network structure)
方法 | Venue | 全搜索 | 室内搜索 | ||||
---|---|---|---|---|---|---|---|
rank-1 | rank-10 | mAP | rank-1 | rank-10 | mAP | ||
DMiR[ | TCSVT 2022 | 50.54 | 88.12 | 49.29 | 53.92 | 92.50 | 62.49 |
BDF[ | ICPR 2021 | 51.05 | 87.75 | 49.63 | 55.93 | 91.55 | 63.38 |
HAT[ | TIFS 2020 | 55.29 | 92.14 | 53.89 | 62.10 | 95.75 | 69.37 |
IFD[ | TOMM 2023 | 55.30 | - | 52.40 | 57.20 | - | 64.30 |
FAM+NNCLoss[ | SPL2023 | 55.75 | 87.51 | 51.52 | 58.24 | 91.08 | 65.65 |
DSAL[ | ACCESS 2023 | 58.16 | 90.43 | 55.43 | 60.48 | 93.25 | 66.94 |
ADSM[ | CSCWD 2023 | 59.69 | 91.68 | 57.84 | 64.20 | 94.33 | 70.46 |
VSD[ | CVPR 2021 | 60.02 | 94.18 | 58.80 | 66.05 | 96.59 | 72.98 |
GUR[ | ICCV 2023 | 60.95 | - | 56.99 | 64.22 | - | 69.49 |
MAUM-G[ | CVPR 2022 | 61.59 | - | 59.96 | 67.07 | - | 73.58 |
TCOM[ | NeuroC 2023 | 63.92 | 94.39 | 60.71 | 68.35 | 97.37 | 73.08 |
FMCNet[ | CVPR 2022 | 66.34 | - | 62.51 | 68.15 | - | 74.09 |
PMT[ | AAAI 2023 | 67.53 | 95.36 | 64.98 | 71.66 | 96.73 | 76.52 |
本文 | 67.68 | 95.42 | 64.37 | 70.82 | 97.83 | 76.64 |
Table 1 Comparison of different methods on the dataset SYSU-MM01/%
方法 | Venue | 全搜索 | 室内搜索 | ||||
---|---|---|---|---|---|---|---|
rank-1 | rank-10 | mAP | rank-1 | rank-10 | mAP | ||
DMiR[ | TCSVT 2022 | 50.54 | 88.12 | 49.29 | 53.92 | 92.50 | 62.49 |
BDF[ | ICPR 2021 | 51.05 | 87.75 | 49.63 | 55.93 | 91.55 | 63.38 |
HAT[ | TIFS 2020 | 55.29 | 92.14 | 53.89 | 62.10 | 95.75 | 69.37 |
IFD[ | TOMM 2023 | 55.30 | - | 52.40 | 57.20 | - | 64.30 |
FAM+NNCLoss[ | SPL2023 | 55.75 | 87.51 | 51.52 | 58.24 | 91.08 | 65.65 |
DSAL[ | ACCESS 2023 | 58.16 | 90.43 | 55.43 | 60.48 | 93.25 | 66.94 |
ADSM[ | CSCWD 2023 | 59.69 | 91.68 | 57.84 | 64.20 | 94.33 | 70.46 |
VSD[ | CVPR 2021 | 60.02 | 94.18 | 58.80 | 66.05 | 96.59 | 72.98 |
GUR[ | ICCV 2023 | 60.95 | - | 56.99 | 64.22 | - | 69.49 |
MAUM-G[ | CVPR 2022 | 61.59 | - | 59.96 | 67.07 | - | 73.58 |
TCOM[ | NeuroC 2023 | 63.92 | 94.39 | 60.71 | 68.35 | 97.37 | 73.08 |
FMCNet[ | CVPR 2022 | 66.34 | - | 62.51 | 68.15 | - | 74.09 |
PMT[ | AAAI 2023 | 67.53 | 95.36 | 64.98 | 71.66 | 96.73 | 76.52 |
本文 | 67.68 | 95.42 | 64.37 | 70.82 | 97.83 | 76.64 |
方法 | Venue | rank-1 | rank-10 | mAP |
---|---|---|---|---|
HAT[ | TIFS 2020 | 71.83 | 87.16 | 67.56 |
VSD[ | CVPR 2021 | 73.20 | - | 71.60 |
GUR[ | ICCV 2023 | 73.91 | - | 70.23 |
DMiR[ | TCSVT 2022 | 75.79 | 89.86 | 69.97 |
SFANet[ | TNNLS 2023 | 76.31 | 91.02 | 68.00 |
IFD[ | TOMM 2023 | 76.90 | - | 72.30 |
BDF[ | ICPR 2021 | 80.67 | 87.72 | 78.83 |
SIFR[ | CVIU 2023 | 81.73 | - | 75.07 |
MAUM-G[ | CVPR 2022 | 83.39 | - | 78.75 |
TVTR[ | ICASSP 2023 | 84.10 | - | 79.50 |
PMT[ | AAAI 2023 | 84.83 | - | 76.55 |
DSAL[ | ACCESS 2023 | 86.45 | 94.36 | 80.20 |
FAM+NNCLoss[ | SPL 2023 | 87.31 | 95.67 | 76.70 |
本文 | 86.16 | 95.79 | 79.11 |
Table 2 Comparison of different methods on the dataset RegDB/%
方法 | Venue | rank-1 | rank-10 | mAP |
---|---|---|---|---|
HAT[ | TIFS 2020 | 71.83 | 87.16 | 67.56 |
VSD[ | CVPR 2021 | 73.20 | - | 71.60 |
GUR[ | ICCV 2023 | 73.91 | - | 70.23 |
DMiR[ | TCSVT 2022 | 75.79 | 89.86 | 69.97 |
SFANet[ | TNNLS 2023 | 76.31 | 91.02 | 68.00 |
IFD[ | TOMM 2023 | 76.90 | - | 72.30 |
BDF[ | ICPR 2021 | 80.67 | 87.72 | 78.83 |
SIFR[ | CVIU 2023 | 81.73 | - | 75.07 |
MAUM-G[ | CVPR 2022 | 83.39 | - | 78.75 |
TVTR[ | ICASSP 2023 | 84.10 | - | 79.50 |
PMT[ | AAAI 2023 | 84.83 | - | 76.55 |
DSAL[ | ACCESS 2023 | 86.45 | 94.36 | 80.20 |
FAM+NNCLoss[ | SPL 2023 | 87.31 | 95.67 | 76.70 |
本文 | 86.16 | 95.79 | 79.11 |
序号 | 实验设置 | rank-1 | rank-10 | rank-20 | mAP |
---|---|---|---|---|---|
1 | 基线(CNN) | 49.89 | 86.67 | 93.70 | 49.13 |
2 | 基线(CNN)+辅助灰度模态 | 51.64 | 87.16 | 94.41 | 50.31 |
3 | 基线(CNN)+X模态 | 52.21 | 87.46 | 94.62 | 50.84 |
4 | 基线(CNN)+H模态 | 54.58 | 89.41 | 95.13 | 53.12 |
Table 3 Results of ablation experiments on the SYSU-MM01 dataset/%
序号 | 实验设置 | rank-1 | rank-10 | rank-20 | mAP |
---|---|---|---|---|---|
1 | 基线(CNN) | 49.89 | 86.67 | 93.70 | 49.13 |
2 | 基线(CNN)+辅助灰度模态 | 51.64 | 87.16 | 94.41 | 50.31 |
3 | 基线(CNN)+X模态 | 52.21 | 87.46 | 94.62 | 50.84 |
4 | 基线(CNN)+H模态 | 54.58 | 89.41 | 95.13 | 53.12 |
序号 | 实验设置 | rank-1 | rank-10 | rank-20 | mAP |
---|---|---|---|---|---|
1 | 基线(CNN) | 49.89 | 86.67 | 93.70 | 49.13 |
2 | 基线(ViT) | 52.14 | 88.46 | 94.98 | 51.64 |
3 | 基线(ViT)+滑动窗口 | 55.88 | 90.53 | 95.95 | 54.23 |
4 | 基线(ViT)+滑动窗口+H模态 | 61.02 | 93.38 | 97.41 | 58.63 |
5 | 基线(ViT)+滑动窗口+H模态+局部特征 | 65.74 | 94.80 | 98.22 | 62.72 |
6 | 基线(ViT)+滑动窗口+H模态+局部特征+全局特征增强 | 67.68 | 95.42 | 98.45 | 64.37 |
Table 4 Results of ablation experiments on the SYSU-MM01 dataset/%
序号 | 实验设置 | rank-1 | rank-10 | rank-20 | mAP |
---|---|---|---|---|---|
1 | 基线(CNN) | 49.89 | 86.67 | 93.70 | 49.13 |
2 | 基线(ViT) | 52.14 | 88.46 | 94.98 | 51.64 |
3 | 基线(ViT)+滑动窗口 | 55.88 | 90.53 | 95.95 | 54.23 |
4 | 基线(ViT)+滑动窗口+H模态 | 61.02 | 93.38 | 97.41 | 58.63 |
5 | 基线(ViT)+滑动窗口+H模态+局部特征 | 65.74 | 94.80 | 98.22 | 62.72 |
6 | 基线(ViT)+滑动窗口+H模态+局部特征+全局特征增强 | 67.68 | 95.42 | 98.45 | 64.37 |
步长 | rank-1/% | rank-10/% | rank-20/% | mAP/% | 平均单轮训练时长/min |
---|---|---|---|---|---|
16 (无重合) | 52.14 | 88.46 | 94.98 | 51.64 | 14.52 |
14 | 54.93 | 89.48 | 95.06 | 53.46 | 16.45 |
12 | 55.88 | 90.53 | 95.95 | 54.23 | 19.59 |
10 | 56.30 | 90.09 | 95.56 | 54.68 | 25.86 |
Table 5 Comparisons of different sliding window step sizes on SYSU-MM01 dataset
步长 | rank-1/% | rank-10/% | rank-20/% | mAP/% | 平均单轮训练时长/min |
---|---|---|---|---|---|
16 (无重合) | 52.14 | 88.46 | 94.98 | 51.64 | 14.52 |
14 | 54.93 | 89.48 | 95.06 | 53.46 | 16.45 |
12 | 55.88 | 90.53 | 95.95 | 54.23 | 19.59 |
10 | 56.30 | 90.09 | 95.56 | 54.68 | 25.86 |
Fig. 5 Visualization of feature distribution ((a) Initial feature distribution; (b) Feature distribution of Baseline ViT model; (c) Feature distribution of the proposed method)
[1] | HAO C F, LI Y F, SUN J, et al. MFEN: multi-scale feature expansion network for visible-infrared person re-identification[C]// Proceedings of the International Conference on Computer Vision and Deep Learning. New York: ACM, 2024: 1-6. |
[2] | REN K, ZHANG L. Implicit discriminative knowledge learning for visible-infrared person re-identification[EB/OL]. [2024-03-21]. http://arxiv.org/html/2403.11708v2. |
[3] | WU A C, ZHENG W S, YU H X, et al. RGB-infrared cross-modality person re-identification[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 5380-5389. |
[4] | YE M, LAN X Y, LI J W, et al. Hierarchical discriminative learning for visible thermal person re-identification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 7501-7508. |
[5] | QIAN Y H, YANG X, TANG S K. Dual-space aggregation learning and random erasure for visible infrared person re-identification[J]. IEEE Access, 2023, 11: 75440-75450. |
[6] | WANG G A, ZHANG T Z, CHENG J, et al. RGB-infrared cross-modality person re-identification via joint pixel and feature alignment[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 3623-3632. |
[7] | ZHONG X, LU T Y, HUANG W X, et al. Grayscale enhancement colorization network for visible-infrared person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(3): 1418-1430. |
[8] | ZHANG Q, LAI C Z, LIU J N, et al. FMCNet: feature-level modality compensation for visible-infrared person re-identification[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 7349-7358. |
[9] | LI D G, WEI X, HONG X P, et al. Infrared-visible cross-modal person re-identification with an X modality[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 4610-4617. |
[10] | YE M, SHEN J B, SHAO L. Visible-infrared person re-identification via homogeneous augmented tri-modal learning[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 728-739. |
[11] | LIU H J, XIA D X, JIANG W. Towards homogeneous modality learning and multi-granularity information exploration for visible-infrared person re-identification[J]. IEEE Journal of Selected Topics in Signal Processing, 2023, 17(3): 545-559. |
[12] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. [2024-01-20]. http://arxiv.org/abs/1706.03762. |
[13] | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16 x 16 words: transformers for image recognition at scale[EB/OL]. [2024-01-20]. http://arxiv.org/abs/2010.11929. |
[14] | WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7794-7803. |
[15] | ZHANG Z Z, LAN C L, ZENG W J, et al. Relation-aware global attention for person re-identification[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 3186-3195. |
[16] | HE S T, LUO H, WANG P C, et al. TransReID: transformer-based object re-identification[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 14993-15002. |
[17] | LIANG T F, JIN Y, LIU W, et al. Cross-modality transformer with modality mining for visible-infrared person re-identification[J]. IEEE Transactions on Multimedia, 2023, 25: 8432-8444. |
[18] | SUN Y F, ZHENG L, YANG Y, et al. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline)[C]// European Conference on Computer Vision. Cham: Springer, 2018: 501-518. |
[19] | WANG G S, YUAN Y F, CHEN X, et al. Learning discriminative features with multiple granularities for person re-identification[C]// The 26th ACM international conference on Multimedia. New York: ACM, 2018: 274-282. |
[20] | ZHENG F, DENG C, SUN X, et al. Pyramidal person re-IDentification via multi-loss dynamic training[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 8506-8514. |
[21] | GONG J H, ZHAO S Y, LAM K M, et al. Spectrum-irrelevant fine-grained representation for visible-infrared person re-identification[J]. Computer Vision and Image Understanding, 2023, 232: 103703. |
[22] | QIU L X, CHEN S, YAN Y, et al. High-order structure based middle-feature learning for visible-infrared person re-identification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(5): 4596-4604. |
[23] | TAN L, DAI P Y, JI R R, et al. Dynamic prototype mask for occluded person re-identification[C]// The 30th ACM International Conference on Multimedia. New York: ACM, 2022: 531-540. |
[24] | HU W P, LIU B H, ZENG H T, et al. Adversarial decoupling and modality-invariant representation learning for visible-infrared person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(8): 5095-5109. |
[25] | YANG B, CHEN J, YE M. Top-K visual tokens transformer: selecting tokens for visible-infrared person re-identification[C]// ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing. New York: IEEE Press, 2023: 1-5. |
[26] | WANG H P, WU W. Attention based Dual Stream Modality-aware model for Visible-Infrared Person re-identification[C]// 2023 26th International Conference on Computer Supported Cooperative Work in Design. New York: IEEE Press, 2023: 897-902. |
[27] | CHEN X M, ZHENG X T, LU X Q. Identity feature disentanglement for visible-infrared person re-identification[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2023, 19(6): 1-20. |
[28] |
邵文斌, 刘玉杰, 孙晓瑞, 等. 基于残差增强注意力的跨模态行人重识别[J]. 图学学报, 2023, 44(1): 33-40.
DOI |
SHAO W B, LIU Y J, SUN X R, et al. Cross modality person re-identification based on residual enhanced attention[J]. Journal of Graphics, 2023, 44(1): 33-40 (in Chinese). | |
[29] | DAI P Y, JI R, WANG H B, et al. Cross-modality person re-identification with generative adversarial training[C]// The 27th International Joint Conference on Artificial Intelligence. New York: ACM, 2018: 677-683. |
[30] | YE M, LAN X Y, LENG Q M, et al. Cross-modality person re-identification via modality-aware collaborative ensemble learning[J]. IEEE Transactions on Image Processing, 2020, 29: 9387-9399. |
[31] | KANSAL K, SUBRAMANYAM A V, WANG Z, et al. SDL: spectrum-disentangled representation learning for visible- infrared person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(10): 3422-3432. |
[32] | LU H, ZOU X Z, ZHANG P P. Learning progressive modality-shared transformers for effective visible-infrared person re-identification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(2): 1835-1843. |
[33] | LIU H J, MA S, XIA D X, et al. SFANet: a spectrum-aware feature augmentation network for visible-infrared person reidentification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(4): 1958-1971. |
[34] | DAI L C, LUO Z M, LI S Z. Exploring part features for unsupervised visible-infrared person re-identification[C]// The 1st ICMR Workshop on Multimedia Object re-Identification. New York: ACM, 2024: 1-5. |
[35] | 耿圆, 谭红臣, 李敬华, 等. 基于视觉信息积累的行人重识别网络[J]. 图学学报, 2022, 43(6): 1193-1200. |
GENG Y, TAN H C, LI J H, et al. Visual information accumulation network for person re-identification[J]. Journal of Graphics, 2022, 43(6): 1193-1200 (in Chinese).
DOI |
|
[36] | ZHU Y X, YANG Z, WANG L, et al. Hetero-Center loss for cross-modality person re-identification[J]. Neurocomputing, 2020, 386: 97-109. |
[37] | DAI H P, XIE Q, LI J C, et al. Visible-infrared person re-identification with human body parts assistance[C]// 2021 International Conference on Multimedia Retrieval. New York: ACM, 2021: 631-637. |
[38] | PARK H, LEE S, LEE J, et al. Learning by Aligning: visible-Infrared Person re-identification using Cross-Modal Correspondences[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 12046-12055. |
[39] | QIAN Y H, TANG S K. Pose attention-guided paired-images generation for visible-infrared person re-identification[J]. IEEE Signal Processing Letters, 2024, 31: 346-350. |
[40] | GWON S, KIM S, SEO K. Balanced and essential modality-specific and modality-shared representations for visible-infrared person re-identification[J]. IEEE Signal Processing Letters, 2024, 31: 491-495. |
[41] | LING Y G, ZHONG Z, LUO Z M, et al. Class-aware modality mix and center-guided metric learning for visible-thermal person re-identification[C]// The 28th ACM International Conference on Multimedia. New York: ACM, 2020: 889-897. |
[42] | ZHANG Y K, YAN Y, LU Y, et al. Towards a unified middle modality learning for visible-infrared person re-identification[C]// The 29th ACM International Conference on Multimedia. New York: ACM, 2021: 788-796. |
[43] | ZHAO J Q, WANG H Z, ZHOU Y, et al. Spatial-channel enhanced transformer for visible-infrared person re-identification[J]. IEEE Transactions on Multimedia, 2023, 25: 3668-3680. |
[44] | WU R Q, JIAO B L, WANG W X, et al. Enhancing visible-infrared person re-identification with modality- and instance-aware visual prompt learning[C]// The 2024 International Conference on Multimedia Retrieval. New York: ACM, 2024: 579-588. |
[45] |
CHEN C Q, YE M, QI M B, et al. Structure-aware positional transformer for visible-infrared person re-identification[J]. IEEE Transactions on Image Processing, 2022, 31: 2352-2364.
DOI PMID |
[46] | CHAI Z H, LING Y G, LUO Z M, et al. Dual-stream transformer with distribution alignment for visible-infrared person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(11): 6764-6776. |
[47] | NGUYEN D T, HONG H G, KIM K W, et al. Person recognition system based on a combination of body images from visible light and thermal cameras[J]. Sensors, 2017, 17(3): 605. |
[48] | WU B T, FENG Y J, SUN Y F, et al. Feature aggregation via attention mechanism for visible-thermal person re-identification[J]. IEEE Signal Processing Letters, 2023, 30: 140-144. |
[49] | TIAN X D, ZHANG Z Z, LIN S H, et al. Farewell to mutual information: variational distillation for cross-modal person re-identification[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 1522-1531. |
[50] | YANG B, CHEN J, YE M. Towards grand unified representation learning for unsupervised visible-infrared person re-identification[C]// 2023 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2023: 11069-11079. |
[51] | LIU J L, SUN Y F, ZHU F, et al. Learning memory-augmented unidirectional metrics for cross-modality person re-identification[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 19366-19375. |
[52] | SI T Z, HE F Z, LI P L, et al. Tri-modality consistency optimization with heterogeneous augmented images for visible-infrared person re-identification[J]. Neurocomputing, 2023, 523: 170-181. |
[53] | LIU H, MIAO Z L, YANG B, et al. A base-derivative framework for cross-modality RGB-infrared person re-identification[C]// 2020 25th International Conference on Pattern Recognition. New York: IEEE Press, 2021: 7640-7646. |
[54] | VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(11): 2579-2605. |
[1] | WU Peichen, YUAN Lining, HU Hao, LIU Zhao, GUO Fang. Video anomaly detection based on attention feature fusion [J]. Journal of Graphics, 2024, 45(5): 922-929. |
[2] | LIU Li, ZHANG Qifan, BAI Yuang, HUANG Kaiye. Research on multi-scale remote sensing image change detection using Swin Transformer [J]. Journal of Graphics, 2024, 45(5): 941-956. |
[3] | ZHANG Dongping, WEI Yangyue, HE Shuji, XU Yunchao, HU Haimiao, HUANG Wenjun. Feature fusion and inter-layer transmission: an improved object detection method based on Anchor DETR [J]. Journal of Graphics, 2024, 45(5): 968-978. |
[4] | SUN Jilong, LIU Yong, ZHOU Liwei, LU Xin, HOU Xiaolong, WANG Yaqiong, WANG Zhifeng. Research on efficient detection model of tunnel lining crack based on DCNv2 and Transformer Decoder [J]. Journal of Graphics, 2024, 45(5): 1050-1061. |
[5] | NIU Weihua, GUO Xun. Rotating target detection algorithm in ship remote sensing images based on YOLOv8 [J]. Journal of Graphics, 2024, 45(4): 726-735. |
[6] | LI Tao, HU Ting, WU Dandan. Monocular depth estimation combining pyramid structure and attention mechanism [J]. Journal of Graphics, 2024, 45(3): 454-463. |
[7] | AI Liefu, TAO Yong, JIANG Changyu. Orthogonal fusion image descriptor based on global attention [J]. Journal of Graphics, 2024, 45(3): 472-481. |
[8] | HUANG Youwen, LIN Zhiqin, ZHANG Jin, CHEN Junkuan. Lightweight human pose estimation algorithm combined with coordinate Transformer [J]. Journal of Graphics, 2024, 45(3): 516-527. |
[9] | SHI Min, ZHUO Xinru, SUN Bilian, HAN Guoqing, ZHU Dengming. Unsupervised clothing animation prediction for different styles [J]. Journal of Graphics, 2024, 45(3): 539-547. |
[10] | LI Jiaqi, WANG Hui, GUO Yu. Classification and segmentation network based on Transformer for triangular mesh [J]. Journal of Graphics, 2024, 45(1): 78-89. |
[11] | CUI Kebin, JIAO Jingyi. Steel surface defect detection algorithm based on MCB-FAH-YOLOv8 [J]. Journal of Graphics, 2024, 45(1): 112-125. |
[12] | LV Heng, YANG Hongyu. A 3D human pose estimation approach based on spatio-temporal motion interaction modeling [J]. Journal of Graphics, 2024, 45(1): 159-168. |
[13] | HUANG Shao-nian, WEN Pei-ran, QUAN Qi, CHEN Rong-yuan. Future frame prediction based on multi-branch aggregation for lightweight video anomaly detection [J]. Journal of Graphics, 2023, 44(6): 1173-1182. |
[14] | ZHANG Li-yuan, ZHAO Hai-rong, HE Wei, TANG Xiong-feng. Knee cysts detection algorithm based on Mask R-CNN integrating global-local attention module [J]. Journal of Graphics, 2023, 44(6): 1183-1190. |
[15] | SHI Jia-hao, YAO Li. Video captioning based on semantic guidance [J]. Journal of Graphics, 2023, 44(6): 1191-1201. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||