Journal of Graphics ›› 2023, Vol. 44 ›› Issue (6): 1183-1190.DOI: 10.11996/JG.j.2095-302X.2023061183
Previous Articles Next Articles
ZHANG Li-yuan1(), ZHAO Hai-rong1, HE Wei1(
), TANG Xiong-feng2
Received:
2023-06-25
Accepted:
2023-08-28
Online:
2023-12-31
Published:
2023-12-17
Contact:
HE Wei (1978-), professor, Ph.D. Her main research interests cover machine learning and medical image analysis. About author:
ZHANG Li-yuan (1990-), associate professor, Ph.D. Her main research interests cover computer vision and medical image analysis.
E-mail:zhangliyuanzly@cust.edu.cn
Supported by:
CLC Number:
ZHANG Li-yuan, ZHAO Hai-rong, HE Wei, TANG Xiong-feng. Knee cysts detection algorithm based on Mask R-CNN integrating global-local attention module[J]. Journal of Graphics, 2023, 44(6): 1183-1190.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023061183
参数 | 配置 |
---|---|
操作系统 | Centos Linux release 7.9.2009 |
CPU | Intel(R) Xeon(R) Gold 6338 CPU @2.00 GHz |
GPU | Nvidia Tesla A100 80 G |
编程语言 | Python 3.8.13 |
深度学习框架 | Tensorflow2.10.0 |
加速环境 | CUDA11.6+cudnn8.4.1 |
Table 1 The experimental environment configuration
参数 | 配置 |
---|---|
操作系统 | Centos Linux release 7.9.2009 |
CPU | Intel(R) Xeon(R) Gold 6338 CPU @2.00 GHz |
GPU | Nvidia Tesla A100 80 G |
编程语言 | Python 3.8.13 |
深度学习框架 | Tensorflow2.10.0 |
加速环境 | CUDA11.6+cudnn8.4.1 |
方法 | 检测任务 | 分割任务 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FPS | AP25 | AP50 | AP75 | AR25 | AR50 | AR75 | AP25 | AP50 | AP75 | AR25 | AR50 | AR75 | |
YOLOv3 | 46.702 | 49.3 | 75.6 | 55.9 | 64.6 | 63.2 | 75.0 | - | - | - | - | - | - |
YOLOv7 | 62.059 | 62.6 | 94.1 | 71.7 | 59.2 | 73.4 | 89.0 | - | - | - | - | - | - |
Centernet | 117.959 | 38.2 | 81.6 | 28.7 | 47.5 | 56.1 | 71.3 | - | - | - | - | - | - |
Faster R-CNN | 44.786 | 50.2 | 75.7 | 55.2 | 63.7 | 63.2 | 81.7 | - | - | - | - | - | - |
Cascade Mask R-CNN | 3.525 | 66.4 | 89.2 | 71.4 | 74.3 | 77.3 | 75.6 | 58.2 | 89.4 | 66.5 | 67.3 | 64.4 | 67.8 |
Mask R-CNN | 5.222 | 65.6 | 88.4 | 76.5 | 72.7 | 78.7 | 80.0 | 56.5 | 89.6 | 64.2 | 64 | 67.2 | 72.4 |
Ours | 6.286 | 69.1 | 92.3 | 81.6 | 76.6 | 81.7 | 83.0 | 59.8 | 92.8 | 68.8 | 68 | 69.3 | 74.9 |
Table 2 The results of this method are compared with other advanced methods
方法 | 检测任务 | 分割任务 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FPS | AP25 | AP50 | AP75 | AR25 | AR50 | AR75 | AP25 | AP50 | AP75 | AR25 | AR50 | AR75 | |
YOLOv3 | 46.702 | 49.3 | 75.6 | 55.9 | 64.6 | 63.2 | 75.0 | - | - | - | - | - | - |
YOLOv7 | 62.059 | 62.6 | 94.1 | 71.7 | 59.2 | 73.4 | 89.0 | - | - | - | - | - | - |
Centernet | 117.959 | 38.2 | 81.6 | 28.7 | 47.5 | 56.1 | 71.3 | - | - | - | - | - | - |
Faster R-CNN | 44.786 | 50.2 | 75.7 | 55.2 | 63.7 | 63.2 | 81.7 | - | - | - | - | - | - |
Cascade Mask R-CNN | 3.525 | 66.4 | 89.2 | 71.4 | 74.3 | 77.3 | 75.6 | 58.2 | 89.4 | 66.5 | 67.3 | 64.4 | 67.8 |
Mask R-CNN | 5.222 | 65.6 | 88.4 | 76.5 | 72.7 | 78.7 | 80.0 | 56.5 | 89.6 | 64.2 | 64 | 67.2 | 72.4 |
Ours | 6.286 | 69.1 | 92.3 | 81.6 | 76.6 | 81.7 | 83.0 | 59.8 | 92.8 | 68.8 | 68 | 69.3 | 74.9 |
Fig. 4 Comparison between the knee cysts detection and segmentation based on our method and the original Mask R-CNN ((a) Ground Truth; (b) YOLOv3; (c) YOLOv7; (d) CenterNet; (e) Faster R-CNN; (f) Cascade Mask R-CNN; (g) Mask R-CNN; (h) Ours)
方法 | FPS | 检测任务 | 分割任务 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AP25 | AP50 | AP75 | AR25 | AR50 | AR75 | AP25 | AP50 | AP75 | AR25 | AR50 | AR75 | ||
Ours | 6.286 | 69.1 | 92.3 | 81.6 | 76.6 | 81.7 | 83 | 59.8 | 92.8 | 69.8 | 68 | 69.3 | 74.9 |
Mask R-CNN | 5.222 | 65.6 | 88.4 | 76.5 | 72.7 | 78.7 | 80 | 56.5 | 89.6 | 64.2 | 64 | 67.2 | 72.4 |
Mask R-CNN + GLA | 5.885 | 66.4 | 90.7 | 78.9 | 75.9 | 78.8 | 77.8 | 57.6 | 88.3 | 65 | 64.7 | 68.5 | 73.3 |
Mask R-CNN + MUL | 7.884 | 68.9 | 91.8 | 81.6 | 76.4 | 81.3 | 82.9 | 59.1 | 92.2 | 68.8 | 66.2 | 69.1 | 73.2 |
Table 3 Results of ablation experiments
方法 | FPS | 检测任务 | 分割任务 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AP25 | AP50 | AP75 | AR25 | AR50 | AR75 | AP25 | AP50 | AP75 | AR25 | AR50 | AR75 | ||
Ours | 6.286 | 69.1 | 92.3 | 81.6 | 76.6 | 81.7 | 83 | 59.8 | 92.8 | 69.8 | 68 | 69.3 | 74.9 |
Mask R-CNN | 5.222 | 65.6 | 88.4 | 76.5 | 72.7 | 78.7 | 80 | 56.5 | 89.6 | 64.2 | 64 | 67.2 | 72.4 |
Mask R-CNN + GLA | 5.885 | 66.4 | 90.7 | 78.9 | 75.9 | 78.8 | 77.8 | 57.6 | 88.3 | 65 | 64.7 | 68.5 | 73.3 |
Mask R-CNN + MUL | 7.884 | 68.9 | 91.8 | 81.6 | 76.4 | 81.3 | 82.9 | 59.1 | 92.2 | 68.8 | 66.2 | 69.1 | 73.2 |
方法 | 检测任务 | 分割任务 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AP25 | AP50 | AP75 | AR25 | AR50 | AR75 | AP25 | AP50 | AP75 | AR25 | AR50 | AR75 | |
多任务不确定性损失 | 68.9 | 91.8 | 81.6 | 76.4 | 81.3 | 82.9 | 59.1 | 92.2 | 68.8 | 66.2 | 69.1 | 73.2 |
65.6 | 88.4 | 76.5 | 72.7 | 78.7 | 80.0 | 56.5 | 89.6 | 64.2 | 64.0 | 67.2 | 72.4 | |
65.1 | 88.1 | 77.4 | 74.3 | 80.1 | 81.9 | 55.3 | 88.3 | 63.6 | 65.5 | 66.8 | 71.9 | |
65.8 | 89.7 | 78.1 | 74.4 | 80.6 | 79.5 | 55.9 | 90.3 | 64 | 64.9 | 68.8 | 70.5 | |
65.3 | 89.1 | 75.4 | 75.3 | 80.9 | 79.0 | 55.1 | 88.7 | 62.1 | 65.8 | 67.6 | 67.1 | |
67.4 | 89.8 | 79.5 | 76.3 | 80.1 | 81.9 | 57.0 | 90.0 | 66 | 65.4 | 68.6 | 72.4 | |
67.2 | 89.9 | 79.1 | 75.8 | 79.8 | 81.1 | 57.4 | 90.4 | 68.5 | 65.7 | 68.5 | 71.0 | |
64.8 | 88.4 | 77.6 | 74.9 | 80.3 | 82.9 | 55.7 | 89.8 | 63.7 | 65.6 | 67.8 | 71.0 | |
65.0 | 88.4 | 75.3 | 73.9 | 80.3 | 82.9 | 55.9 | 89.8 | 64.8 | 64.4 | 67.6 | 70.0 |
Table 4 Comparison of experimental results using multi-task uncertainty loss and using grid search to set loss weights
方法 | 检测任务 | 分割任务 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AP25 | AP50 | AP75 | AR25 | AR50 | AR75 | AP25 | AP50 | AP75 | AR25 | AR50 | AR75 | |
多任务不确定性损失 | 68.9 | 91.8 | 81.6 | 76.4 | 81.3 | 82.9 | 59.1 | 92.2 | 68.8 | 66.2 | 69.1 | 73.2 |
65.6 | 88.4 | 76.5 | 72.7 | 78.7 | 80.0 | 56.5 | 89.6 | 64.2 | 64.0 | 67.2 | 72.4 | |
65.1 | 88.1 | 77.4 | 74.3 | 80.1 | 81.9 | 55.3 | 88.3 | 63.6 | 65.5 | 66.8 | 71.9 | |
65.8 | 89.7 | 78.1 | 74.4 | 80.6 | 79.5 | 55.9 | 90.3 | 64 | 64.9 | 68.8 | 70.5 | |
65.3 | 89.1 | 75.4 | 75.3 | 80.9 | 79.0 | 55.1 | 88.7 | 62.1 | 65.8 | 67.6 | 67.1 | |
67.4 | 89.8 | 79.5 | 76.3 | 80.1 | 81.9 | 57.0 | 90.0 | 66 | 65.4 | 68.6 | 72.4 | |
67.2 | 89.9 | 79.1 | 75.8 | 79.8 | 81.1 | 57.4 | 90.4 | 68.5 | 65.7 | 68.5 | 71.0 | |
64.8 | 88.4 | 77.6 | 74.9 | 80.3 | 82.9 | 55.7 | 89.8 | 63.7 | 65.6 | 67.8 | 71.0 | |
65.0 | 88.4 | 75.3 | 73.9 | 80.3 | 82.9 | 55.9 | 89.8 | 64.8 | 64.4 | 67.6 | 70.0 |
[1] |
DAINESE P, WYNGAERT K V, DE MITS S, et al. Association between knee inflammation and knee pain in patients with knee osteoarthritis: a systematic review[J]. Osteoarthritis and Cartilage, 2022, 30(4): 516-534.
DOI URL |
[2] | PERRY T A, O'NEILL T W, TOLSTYKH I, et al. Magnetic resonance imaging-assessed subchondral cysts and incident knee pain and knee osteoarthritis: data from the multicenter osteoarthritis study[J]. Arthritis & Rheumatology, 2022, 74(1): 60-69. |
[3] | 艾阳平. 100例膝关节囊肿的高频超声与MRI分析[J]. 影像研究与医学应用, 2021, 5(10): 107-108. |
AI Y P. High frequency ultrasound and MRI analysis of 100 cases of knee joint cyst[J]. Journal of Imaging Research and Medical Applications, 2021, 5(10): 107-108 (in Chinese). | |
[4] |
DAINESE P, WYNGAERT K V, DE MITS S, et al. Association between knee inflammation and knee pain in patients with knee osteoarthritis: a systematic review[J]. Osteoarthritis and Cartilage, 2022, 30(4): 516-534.
DOI URL |
[5] |
DING Y, ACOSTA R, ENGUIX V, et al. Using deep convolutional neural networks for neonatal brain image segmentation[J]. Frontiers in Neuroscience, 2020, 14: 1-10.
DOI URL |
[6] | MEHTA D, GAL Y, BOWLING A, et al. Out-of-distribution detection for long-tailed and fine-grained skin lesion images[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2022: 732-742. |
[7] |
KHAN S, AZAM B, YAO Y C, et al. Deep collaborative network with alpha matte for precise knee tissue segmentation from MRI[J]. Computer Methods and Programs in Biomedicine, 2022, 222: 106963.
DOI URL |
[8] |
AWAN M J, RAHIM M S M, SALIM N, et al. Efficient detection of knee anterior cruciate ligament from magnetic resonance imaging using deep learning approach[J]. Diagnostics, 2021, 11(1): 105.
DOI URL |
[9] | HUO X Z, SUN G, TIAN S W, et al. HiFuse: hierarchical multi-scale feature fusion network for medical image classification[EB/OL]. (2022-09-21) [2023-01-18]. https://arxiv.org/abs/2209.10218.pdf. |
[10] |
LIU S S, WANG H L, LI Y, et al. AHU-MultiNet: adaptive loss balancing based on homoscedastic uncertainty in multi-task medical image segmentation network[J]. Computers in Biology and Medicine, 2022, 150: 106157.
DOI URL |
[11] | HAQUE A, IMRAN A A Z, WANG A, et al. Generalized multi-task learning from substantially unlabeled multi-source medical image data[EB/OL]. (2021-10-25) [2023-01-18]. https://arxiv.org/abs/2110.13185.pdf. |
[12] |
TIAN Y N, YANG G D, WANG Z, et al. Apple detection during different growth stages in orchards using the improved YOLO-V3 model[J]. Computers and Electronics in Agriculture, 2019, 157: 417-426.
DOI URL |
[13] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 7464-7475. |
[14] | ZHOU X Y, WANG D Q, KRÄHENBÜHL P. Objects as points[EB/OL]. (2019-04-16) [2023-01-18]. https://arxiv.org/abs/1904.07850.pdf. |
[15] |
CHEN Y H, WANG H R, LI W, et al. Scale-aware domain adaptive faster R-CNN[J]. International Journal of Computer Vision, 2021, 129(7): 2223-2243.
DOI |
[16] |
XU B B, WANG W S, FALZON G, et al. Automated cattle counting using Mask R-CNN in quadcopter vision system[J]. Computers and Electronics in Agriculture, 2020, 171: 105300.
DOI URL |
[17] |
CAI Z W, VASCONCELOS N. Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(5): 1483-1498.
DOI URL |
[18] | 钱春红, 沈海林, 李振凯. 探讨膝关节囊性病变的磁共振影像(MRI)表现及其诊断价值[J]. 影像研究与医学应用, 2019, 3(18): 54-55. |
QIAN C H, SHEN H L, LI Z K. To investigate the magnetic resonance imaging (MRI) manifestations of cystic lesions of knee joint and its diagnostic value[J]. Journal of Imaging Research and Medical Applications, 2019, 3(18): 54-55 (in Chinese). | |
[19] | CHEN L C, YANG Y, WANG J, et al. Attention to scale: scale-aware semantic image segmentation[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 3640-3649. |
[20] |
LI L H, TANG S, ZHANG Y D, et al. GLA: global-local attention for image description[J]. IEEE Transactions on Multimedia, 2018, 20(3): 726-737.
DOI URL |
[21] | SONG C H, HAN H J, AVRITHIS Y. All the attention You need: global-local, spatial-channel attention for image retrieval[C]// 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. New York: IEEE Press, 2022: 2754-2763. |
[22] | KENDALL A, GAL Y, CIPOLLA R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7482-7491. |
[23] |
MOHAJER B, DOLATSHAHI M, MORADI K, et al. Role of thigh muscle changes in knee osteoarthritis outcomes: osteoarthritis initiative data[J]. Radiology, 2022, 305(1): 169-178.
DOI URL |
[24] |
WANG Z B, LV Y K, WU R L, et al. Review of GrabCut in image processing[J]. Mathematics, 2023, 11(8): 1965.
DOI URL |
[1] |
GUO Zongyang, LIU Lidong, JIANG Donghua, LIU Zixiang, ZHU Shukang, CHEN Jinghua.
Human action recognition algorithm based on semantics guided neural networks
[J]. Journal of Graphics, 2024, 45(1): 26-34.
|
[2] |
ZHAI Yongjie, ZHAO Xiaoyu, WANG Luyao, WANG Yaru, SONG Xiaoke, ZHU Haoshuo.
IDD-YOLOv7: a lightweight method for multiple defect detection of insulators in transmission lines
[J]. Journal of Graphics, 2024, 45(1): 90-101.
|
[3] |
GU Tianjun, XIONG Suya, LIN Xiao.
Diversified generation of theatrical masks based on SASGAN
[J]. Journal of Graphics, 2024, 45(1): 102-111.
|
[4] |
CUI Kebin, JIAO Jingyi.
Steel surface defect detection algorithm based on MCB-FAH-YOLOv8
[J]. Journal of Graphics, 2024, 45(1): 112-125.
|
[5] | WEI Chen-hao, YANG Rui, LIU Zhen-bing, LAN Ru-shi, SUN Xi-yan, LUO Xiao-nan. YOLOv8 with bi-level routing attention for road scene object detection [J]. Journal of Graphics, 2023, 44(6): 1104-1111. |
[6] | DING Jian-chuan, XIAO Jin-tong, ZHAO Ke-xin, JIA Dong-qing, CUI Bing-de, YANG Xin. Spiking neural network-based navigation and obstacle avoidance algorithm for complex scenes [J]. Journal of Graphics, 2023, 44(6): 1121-1129. |
[7] | ZHANG Chi, ZHANG Xiao-juan, ZHAO Yang, YANG Fan. Palette-based semi-interactive low-light Thangka images enhancement [J]. Journal of Graphics, 2023, 44(6): 1202-1211. |
[8] | YANG Chen-cheng, DONG Xiu-cheng, HOU Bing, ZHANG Dang-cheng, XIANG Xian-ming, FENG Qi-ming. Reference based transformer texture migrates depth images super resolution reconstruction [J]. Journal of Graphics, 2023, 44(5): 861-867. |
[9] | SONG Huan-sheng, WEN Ya, SUN Shi-jie, SONG Xiang-yu, ZHANG Chao-yang, LI Xu. Tunnel fire detection based on improved student-teacher network [J]. Journal of Graphics, 2023, 44(5): 978-987. |
[10] | LI Li-xia, WANG Xin, WANG Jun, ZHANG You-yuan. Small object detection algorithm in UAV image based on feature fusion and attention mechanism [J]. Journal of Graphics, 2023, 44(4): 658-666. |
[11] | LI Xin, PU Yuan-yuan, ZHAO Zheng-peng, XU Dan, QIAN Wen-hua. Content semantics and style features match consistent artistic style transfer [J]. Journal of Graphics, 2023, 44(4): 699-709. |
[12] | YU Wei-qun, LIU Jia-tao, ZHANG Ya-ping. Monocular depth estimation based on Laplacian pyramid with attention fusion [J]. Journal of Graphics, 2023, 44(4): 728-738. |
[13] | HU Xin, ZHOU Yun-qiang, XIAO Jian, YANG Jie. Surface defect detection of threaded steel based on improved YOLOv5 [J]. Journal of Graphics, 2023, 44(3): 427-437. |
[14] | HAO Peng-fei, LIU Li-qun, GU Ren-yuan. YOLO-RD-Apple orchard heterogenous image obscured fruit detection model [J]. Journal of Graphics, 2023, 44(3): 456-464. |
[15] | LI Yu, YAN Tian-tian, ZHOU Dong-sheng, WEI Xiao-peng. Natural scene text detection based on attention mechanism and deep multi-scale feature fusion [J]. Journal of Graphics, 2023, 44(3): 473-481. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||