Journal of Graphics ›› 2024, Vol. 45 ›› Issue (4): 745-759.DOI: 10.11996/JG.j.2095-302X.2024040745
• Image Processing and Computer Vision • Previous Articles Next Articles
GONG Yongchao1,2(), SHEN Xukun1,2,3(
)
Received:
2023-12-18
Accepted:
2024-05-03
Online:
2024-08-31
Published:
2024-09-03
Contact:
SHEN Xukun
About author:
First author contact:GONG Yongchao (1988-), Ph.D. His main research interests cover computer vision and deep learning. E-mail:gyc_ustc@163.com
CLC Number:
GONG Yongchao, SHEN Xukun. A deep architecture for reciprocal object detection and instance segmentation[J]. Journal of Graphics, 2024, 45(4): 745-759.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024040745
Fig. 1 Illustration of errors in instance segmentation due to localization errors in object detection ((a), (b) Boxes do not fully enclose objects; (c), (d) Boxes do not enclose objects tightly)
类型 | 方法 | 尺寸 | 帧率 | APm | AP50m | AP75m | APSm | AP50M | APLm |
---|---|---|---|---|---|---|---|---|---|
两阶段 | Mask R-CNN[ | 800 | 9.5 (V) | 36.2 | 58.3 | 38.6 | 16.7 | 38.8 | 51.5 |
MS R-CNN[ | 800 | 9.1 (V) | 37.4 | 57.9 | 40.4 | 17.3 | 39.5 | 53.0 | |
RetinaMask[ | 800 | 6.0 (V) | 34.7 | 55.4 | 36.9 | 14.3 | 36.7 | 50.5 | |
单阶段 | FCIS[ | 600 | 6.6 (P) | 29.2 | 49.5 | - | 7.1 | 31.3 | 50.0 |
YOLACT[ | 550 | 33.0 (P) | 29.8 | 48.5 | 31.2 | 9.9 | 31.3 | 47.7 | |
YOLACT++[ | 550 | 27.0 (P) | 34.6 | 53.8 | 36.9 | 11.9 | 36.8 | 55.1 | |
PolarMask[ | 550 | 23.9 (P) | 30.4 | 51.9 | 31.0 | 13.4 | 32.4 | 42.8 | |
RDSNet | 550 | 32.0 (P) | 32.1 | 53.0 | 33.4 | 11.0 | 33.8 | 51.0 | |
MEInst[ | 800 | 12.8 (P) | 33.9 | 56.2 | 35.4 | 19.8 | 36.1 | 42.3 | |
SOLO[ | 800 | 10.4 (V) | 37.8 | 59.5 | 40.4 | 16.4 | 40.6 | 54.2 | |
TensorMask[ | 800 | 2.6 (V) | 37.3 | 59.5 | 39.5 | 17.5 | 39.3 | 51.6 | |
RDSNet (以文献[2]为基线) | 800 | 8.8 (V) | 36.4 | 57.9 | 39.0 | 16.4 | 39.5 | 51.6 | |
RDSNet (以文件[31]为基线) | 800 | 7.5 (P) | 37.5 | 59.3 | 40.4 | 16.9 | 40.5 | 53.0 | |
RDSNet+ (以文献[2]为基线) | 800 | 8.8 (V) | 37.2 | 59.1 | 40.2 | 16.8 | 41.2 | 52.8 | |
RDSNet+ (以文献[31]为基线) | 800 | 7.5 (P) | 38.5 | 60.4 | 41.8 | 17.3 | 41.8 | 54.3 | |
性能上限 | RDSNet (基于真值框) | 800 | - | 58.7 | 68.5 | 63.1 | 49.2 | 59.0 | 75.4 |
Table 1 Instance segmentation results on COCO test-dev. P means Titan XP or 1080Ti, and V means Tesla V100
类型 | 方法 | 尺寸 | 帧率 | APm | AP50m | AP75m | APSm | AP50M | APLm |
---|---|---|---|---|---|---|---|---|---|
两阶段 | Mask R-CNN[ | 800 | 9.5 (V) | 36.2 | 58.3 | 38.6 | 16.7 | 38.8 | 51.5 |
MS R-CNN[ | 800 | 9.1 (V) | 37.4 | 57.9 | 40.4 | 17.3 | 39.5 | 53.0 | |
RetinaMask[ | 800 | 6.0 (V) | 34.7 | 55.4 | 36.9 | 14.3 | 36.7 | 50.5 | |
单阶段 | FCIS[ | 600 | 6.6 (P) | 29.2 | 49.5 | - | 7.1 | 31.3 | 50.0 |
YOLACT[ | 550 | 33.0 (P) | 29.8 | 48.5 | 31.2 | 9.9 | 31.3 | 47.7 | |
YOLACT++[ | 550 | 27.0 (P) | 34.6 | 53.8 | 36.9 | 11.9 | 36.8 | 55.1 | |
PolarMask[ | 550 | 23.9 (P) | 30.4 | 51.9 | 31.0 | 13.4 | 32.4 | 42.8 | |
RDSNet | 550 | 32.0 (P) | 32.1 | 53.0 | 33.4 | 11.0 | 33.8 | 51.0 | |
MEInst[ | 800 | 12.8 (P) | 33.9 | 56.2 | 35.4 | 19.8 | 36.1 | 42.3 | |
SOLO[ | 800 | 10.4 (V) | 37.8 | 59.5 | 40.4 | 16.4 | 40.6 | 54.2 | |
TensorMask[ | 800 | 2.6 (V) | 37.3 | 59.5 | 39.5 | 17.5 | 39.3 | 51.6 | |
RDSNet (以文献[2]为基线) | 800 | 8.8 (V) | 36.4 | 57.9 | 39.0 | 16.4 | 39.5 | 51.6 | |
RDSNet (以文件[31]为基线) | 800 | 7.5 (P) | 37.5 | 59.3 | 40.4 | 16.9 | 40.5 | 53.0 | |
RDSNet+ (以文献[2]为基线) | 800 | 8.8 (V) | 37.2 | 59.1 | 40.2 | 16.8 | 41.2 | 52.8 | |
RDSNet+ (以文献[31]为基线) | 800 | 7.5 (P) | 38.5 | 60.4 | 41.8 | 17.3 | 41.8 | 54.3 | |
性能上限 | RDSNet (基于真值框) | 800 | - | 58.7 | 68.5 | 63.1 | 49.2 | 59.0 | 75.4 |
类型 | 方法 | 尺寸 | 主干网络 | 帧率 | APbb | AP50bb | AP75bb | APSbb | APMbb | APLbb | |
---|---|---|---|---|---|---|---|---|---|---|---|
两阶段 | Mask R-CNN[ | 800 | R-101 | 9.5 (V) | 39.7 | 61.6 | 43.2 | 23.0 | 43.2 | 49.7 | |
Cascade R-CNN[ | 800 | R-101 | 6.8 (V) | 43.1 | 61.5 | 46.9 | 24.0 | 45.9 | 55.4 | ||
HTC[ | 800 | R-101 | 4.1 (V) | 45.1 | 64.3 | 49.0 | 25.2 | 48.0 | 58.2 | ||
单阶段 | YOLOv3[ | 608 | D-53 | 19.8 (P) | 33.0 | 57.9 | 34.3 | 18.3 | 35.4 | 41.9 | |
RefineDet[ | 512 | R-101 | 9.1 (P) | 36.4 | 57.5 | 39.5 | 16.6 | 39.9 | 51.4 | ||
CornerNet[ | 512 | H-104 | 4.4 (P) | 40.5 | 57.8 | 45.3 | 20.8 | 44.8 | 56.7 | ||
RDSNet | 基线[ | 800 | R-101 | 10.9 (V) | 38.1 | 58.5 | 40.8 | 21.2 | 41.5 | 48.2 | |
w/o MBRM | 8.8 (V) | 39.4 | 60.1 | 42.5 | 22.1 | 42.6 | 49.9 | ||||
with MBRM | 8.5 (V) | 40.3 | 60.1 | 43.0 | 22.1 | 43.5 | 51.5 | ||||
基线[ | 800 | R-101 | 9.1 (P) | 42.0 | 62.4 | 46.5 | 24.6 | 44.8 | 53.3 | ||
w/o MBRM | 7.5 (P) | 42.3 | 62.5 | 46.8 | 24.7 | 44.8 | 53.5 | ||||
with MBRM | 7.3 (P) | 43.2 | 63.7 | 48.0 | 25.0 | 45.2 | 56.1 | ||||
RDSNet+ | 以文献[2]为检测器 | 800 | R-101 | 8.4 (V) | 41.4 | 60.9 | 44.3 | 22.5 | 44.0 | 52.4 | |
以文献[31]为检测器 | 7.2 (P) | 44.3 | 64.1 | 49.2 | 25.3 | 45.9 | 56.8 |
Table 3 Object detection results on COCO test-dev
类型 | 方法 | 尺寸 | 主干网络 | 帧率 | APbb | AP50bb | AP75bb | APSbb | APMbb | APLbb | |
---|---|---|---|---|---|---|---|---|---|---|---|
两阶段 | Mask R-CNN[ | 800 | R-101 | 9.5 (V) | 39.7 | 61.6 | 43.2 | 23.0 | 43.2 | 49.7 | |
Cascade R-CNN[ | 800 | R-101 | 6.8 (V) | 43.1 | 61.5 | 46.9 | 24.0 | 45.9 | 55.4 | ||
HTC[ | 800 | R-101 | 4.1 (V) | 45.1 | 64.3 | 49.0 | 25.2 | 48.0 | 58.2 | ||
单阶段 | YOLOv3[ | 608 | D-53 | 19.8 (P) | 33.0 | 57.9 | 34.3 | 18.3 | 35.4 | 41.9 | |
RefineDet[ | 512 | R-101 | 9.1 (P) | 36.4 | 57.5 | 39.5 | 16.6 | 39.9 | 51.4 | ||
CornerNet[ | 512 | H-104 | 4.4 (P) | 40.5 | 57.8 | 45.3 | 20.8 | 44.8 | 56.7 | ||
RDSNet | 基线[ | 800 | R-101 | 10.9 (V) | 38.1 | 58.5 | 40.8 | 21.2 | 41.5 | 48.2 | |
w/o MBRM | 8.8 (V) | 39.4 | 60.1 | 42.5 | 22.1 | 42.6 | 49.9 | ||||
with MBRM | 8.5 (V) | 40.3 | 60.1 | 43.0 | 22.1 | 43.5 | 51.5 | ||||
基线[ | 800 | R-101 | 9.1 (P) | 42.0 | 62.4 | 46.5 | 24.6 | 44.8 | 53.3 | ||
w/o MBRM | 7.5 (P) | 42.3 | 62.5 | 46.8 | 24.7 | 44.8 | 53.5 | ||||
with MBRM | 7.3 (P) | 43.2 | 63.7 | 48.0 | 25.0 | 45.2 | 56.1 | ||||
RDSNet+ | 以文献[2]为检测器 | 800 | R-101 | 8.4 (V) | 41.4 | 60.9 | 44.3 | 22.5 | 44.0 | 52.4 | |
以文献[31]为检测器 | 7.2 (P) | 44.3 | 64.1 | 49.2 | 25.3 | 45.9 | 56.8 |
No. | 方法 | 模块 | TE | OHEM | IE | 帧率 | APm |
---|---|---|---|---|---|---|---|
1 | YOLACT[ | LC | 33 | 29.9 | |||
2 | RDSNets | Corr | 32 | 31.0+1.1 | |||
3 | √ | 30.0 | |||||
4 | √ | 30.7 | |||||
5 | √ | 31.2 | |||||
6 | √ | √ | 30.8 | ||||
7 | √ | √ | 31.6 | ||||
8 | √ | √ | √ | 31.8+1.9 | |||
9 | RDSNetf | Corr | √ | √ | 29 | 28.8 | |
10 | √ | √ | √ | 28.5 |
Table 2 Demonstration of the effectiveness of the cropping module on COCO val2017
No. | 方法 | 模块 | TE | OHEM | IE | 帧率 | APm |
---|---|---|---|---|---|---|---|
1 | YOLACT[ | LC | 33 | 29.9 | |||
2 | RDSNets | Corr | 32 | 31.0+1.1 | |||
3 | √ | 30.0 | |||||
4 | √ | 30.7 | |||||
5 | √ | 31.2 | |||||
6 | √ | √ | 30.8 | ||||
7 | √ | √ | 31.6 | ||||
8 | √ | √ | √ | 31.8+1.9 | |||
9 | RDSNetf | Corr | √ | √ | 29 | 28.8 | |
10 | √ | √ | √ | 28.5 |
Fig. 8 Instance segmentation results on COCO val2017 obtained by different ratios of positive/negative samples and OHEM strategies in the cropping module
方法 | APbb | APSbb | APMbb | APLbb |
---|---|---|---|---|
RetinaNet [ | 35.9 | 17.1 | 39.7 | 53.3 |
BB-of-Mask | 34.2−1.7 | 11.8−5.3 | 37.7−2.0 | 55.1+1.8 |
MBRM | 37.2+1.3 | 16.9−0.2 | 40.8+1.1 | 56.5+3.2 |
Table 4 Demonstration of the effectiveness of MBRM on COCO val2017
方法 | APbb | APSbb | APMbb | APLbb |
---|---|---|---|---|
RetinaNet [ | 35.9 | 17.1 | 39.7 | 53.3 |
BB-of-Mask | 34.2−1.7 | 11.8−5.3 | 37.7−2.0 | 55.1+1.8 |
MBRM | 37.2+1.3 | 16.9−0.2 | 40.8+1.1 | 56.5+3.2 |
Fig. 13 Quantitative results on COCO test-dev for verifying the impact of the performance of detectors on RDSNet ((a) Results of different base detectors; (b) Results of RDSNet object detection with different base detectors; (c) Results of RDSNet instance segmentation with different base detectors)
[1] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[2] | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 42(2): 318-327. |
[3] | DAI J F, LI Y, HE K M, et al. R-FCN: Object detection via region-based fully convolutional networks[C]// The 30th International Conference on Neural Information Processing Systems. New York: ACM, 2016: 379-387. |
[4] | HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// 2017 International Conference on Computer Vision. New York: IEEE Press, 2017: 2980-2988. |
[5] | DAI J F, HE K M, SUN J. Instance-aware semantic segmentation via multi-task network cascades[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 3150-3158. |
[6] | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 8759-8768. |
[7] | FU C Y, SHVETS M, BERG A C. RetinaMask: learning to predict masks improves state-of-the-art single-shot detection for free[EB/OL]. [2023-10-18]. http://arxiv.org/abs/1901.03353. |
[8] | CHEN H, SUN K Y, TIAN Z, et al. BlendMask: top-down meets bottom-up for instance segmentation[C]// 2020 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 8570-8578. |
[9] | LEE Y W, PARK J. Centermask: real-time anchor-free instance segmentation[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 2594-2603. |
[10] | BOLYA D, ZHOU C, XIAO F Y, et al. Yolact: Real-time instance segmentation[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 9160-9169. |
[11] | TIAN Z, SHEN C H, CHEN H. Conditional convolutions for instance segmentation[C]// European Conference on Computer Vision. Cham: Springer, 2020: 282-298. |
[12] | LI Y, QI H Z, DAI J F, et al. Fully convolutional instance-aware semantic segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 4438-4446. |
[13] | WANG X L, KONG T, SHEN C H, et al. SOLO: segmenting objects by locations[M]//Computer Vision-ECCV 2020. Cham: Springer, 2020: 649-665. |
[14] | CHEN X L, WANG P, CHENG G, et al. Tensormask: surpassing pixel-level encoding for instance segmentation[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 2061-2069. |
[15] | DE BRABANDERE B, NEVEN D, VAN GOOL L. Semantic instance segmentation with a discriminative loss function[EB/OL]. [2023-10-18]. http://arxiv.org/abs/1708.02551. |
[16] | FATHI A, WOJNA Z, RATHOD V, et al. Semantic instance segmentation via deep metric learning[EB/OL]. [2023-10-18]. http://arxiv.org/abs/1703.10277. |
[17] | WANG S R, GONG Y C, XING J L, et al. RDSNet: a new deep architecture for Reciprocal object detection and instance segmentation[C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12208-12215. |
[18] | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]// Computer Vision - ECCV 2014. Cham: Springer, 2014: 740-755. |
[19] | CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]// 2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 3213-3223. |
[20] | LIN T Y, DOLLÁR P, GIRSHICK R B, et al. Feature pyramid networks for object detection[C]// 2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 2117-2125. |
[21] | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2015: 3431-3440. |
[22] | SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2015: 815-823. |
[23] | SHRIVASTAVA A, GUPTA A, GIRSHICK R. Training region-based object detectors with online hard example mining[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 761-769. |
[24] | CHEN K, WANG J Q, PANG J M, et al. MMDetection: open MMLab detection toolbox and benchmark[EB/OL]. [2023- 10-18]. http://arxiv.org/abs/1906.07155. |
[25] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 770-778. |
[26] | KIRILLOV A, GIRSHICK R, HE K M, et al. Panoptic feature pyramid networks[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 6392-6401. |
[27] | HUANG Z J, HUANG L C, GONG Y C, et al. Mask scoring R-CNN[C]// 2019 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 6402-6411. |
[28] | BOLYA D, ZHOU C, XIAO F Y, et al. YOLACT better real-time instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(2): 1108-1121. |
[29] | XIE E Z, SUN P Z, SONG X G, et al. PolarMask: single shot instance segmentation with polar representation[EB/OL]. [2023-10-18]. http://arxiv.org/abs/1909.13226. |
[30] | ZHANG R F, TIAN Z, SHEN C H, et al. Mask encoding for single shot instance segmentation[EB/OL]. [2023-10-18]. http://arxiv.org/abs/2003.11712. |
[31] | CHEN Y T, HAN C X, WANG N Y, et al. Revisiting feature alignment for one-stage object detection[EB/OL]. [2023-10-18]. http://arxiv.org/abs/1908.01570. |
[32] | CAI Z W, VASCONCELOS N. Cascade r-cnn: Delving into high quality object detection[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 6154-6162. |
[33] | CHEN K, PANG J M, WANG J Q, et al. Hybrid task cascade for instance segmentation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 4974-4983. |
[34] | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2023-10-18]. http://arxiv.org/abs/1804.02767. |
[35] | ZHANG S F, WEN L Y, BIAN X, et al. Single-shot refinement neural network for object detection[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 4203-4212. |
[36] | LAW H, DENG J. CornerNet: detecting objects as paired keypoints[M]//Computer Vision-ECCV 2018. Cham: Springer, 2018: 765-781. |
[37] | NEWELL A, YANG K Y, DENG J. Stacked hourglass networks for human pose estimation[M]//Computer Vision-ECCV 2016. Cham: Springer, 2016: 483-499. |
[38] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M]//Computer Vision-ECCV 2016. Cham: Springer, 2016: 21-37. |
[39] | 梁正兴, 王先兵, 何涛, 等. 实例分割和边缘优化算法的研究与实现[J]. 图学学报, 2020, 41(6): 939-946. |
LIANG Z X, WANG X B, HE T, et al. Research and implementation of instance segmentation and edge optimization algorithm[J]. Journal of Graphics, 2020, 41(6): 939-946 (in Chinese). | |
[40] | 崔振东, 李宗民, 杨树林, 等. 基于语义分割引导的三维目标检测[J]. 图学学报, 2022, 43(6): 1134-1142. |
CUI Z D, LI Z M, YANG S L, et al. 3D object detection based on semantic segmentation guidance[J]. Journal of Graphics, 2022, 43(6): 1134-1142 (in Chinese). |
[1] |
WANG Yaru, FENG Lilong, SONG Xiaoke, QU Zhuo, YANG Ke, WANG Qianming, ZHAI Yongjie .
TFD-YOLOv8: a transmission line foreign object detection method
[J]. Journal of Graphics, 2024, 45(5): 901-912.
|
[2] | ZHAI Yongjie, LI Jiawei, CHEN Nianhao, WANG Qianming, WANG Xinying. The vehicle parts detection method enhanced with Transformer integration [J]. Journal of Graphics, 2024, 45(5): 930-940. |
[3] | JIANG Xiaoheng, DUAN Jinzhong, LU Yang, CUI Lisha, XU Mingliang. Fusing prior knowledge reasoning for surface defect detection [J]. Journal of Graphics, 2024, 45(5): 957-967. |
[4] | ZHANG Dongping, WEI Yangyue, HE Shuji, XU Yunchao, HU Haimiao, HUANG Wenjun. Feature fusion and inter-layer transmission: an improved object detection method based on Anchor DETR [J]. Journal of Graphics, 2024, 45(5): 968-978. |
[5] | SUN Jilong, LIU Yong, ZHOU Liwei, LU Xin, HOU Xiaolong, WANG Yaqiong, WANG Zhifeng. Research on efficient detection model of tunnel lining crack based on DCNv2 and Transformer Decoder [J]. Journal of Graphics, 2024, 45(5): 1050-1061. |
[6] | LI Daxiang, JI Zhan, LIU Ying, TANG Yao. Improving YOLOv7 remote sensing image target detection algorithm [J]. Journal of Graphics, 2024, 45(4): 650-658. |
[7] | HU Xin, CHANG Yashu, QIN Hao, XIAO Jian, CHENG Hongliang. Binocular ranging method based on improved YOLOv8 and GMM image point set matching [J]. Journal of Graphics, 2024, 45(4): 714-725. |
[8] | ZENG Zhichao, XU Yue, WANG Jingyu, YE Yuanlong, HUANG Zhikai, WANG Huan. A water surface target detection algorithm based on SOE-YOLO lightweight network [J]. Journal of Graphics, 2024, 45(4): 736-744. |
[9] | WEI Chen-hao, YANG Rui, LIU Zhen-bing, LAN Ru-shi, SUN Xi-yan, LUO Xiao-nan. YOLOv8 with bi-level routing attention for road scene object detection [J]. Journal of Graphics, 2023, 44(6): 1104-1111. |
[10] | LI Li-xia, WANG Xin, WANG Jun, ZHANG You-yuan. Small object detection algorithm in UAV image based on feature fusion and attention mechanism [J]. Journal of Graphics, 2023, 44(4): 658-666. |
[11] | DENG Wei-ming, YANG Tie-jun, LI Chun-chun, HUANG Lin. Object detection for nameplate based on neural architecture search [J]. Journal of Graphics, 2023, 44(4): 718-727. |
[12] | LUO Wen-yu, FU Ming-yue. On-site monitoring technology of illegal swimming and fishing based on YoloX-ECA [J]. Journal of Graphics, 2023, 44(3): 465-472. |
[13] | WANG Jia-jing, WANG Chen, ZHU Yuan-yuan, WANG Xiao-mei. Graph element detection matching based on Republic of China banknotes [J]. Journal of Graphics, 2023, 44(3): 492-501. |
[14] | CHEN Gang, ZHANG Pei-ji, GONG Dong-dong, YU Jun-qing. Research on safety clothing detection method for surveillance video of thermal power plant [J]. Journal of Graphics, 2023, 44(2): 291-297. |
[15] | PI Jun, LIU Yu-heng, LI Jiu-hao. Research on lightweight forest fire detection algorithm based on YOLOv5s [J]. Journal of Graphics, 2023, 44(1): 26-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||