Journal of Graphics ›› 2024, Vol. 45 ›› Issue (5): 979-986.DOI: 10.11996/JG.j.2095-302X.2024050979
• Image Processing and Computer Vision • Previous Articles Next Articles
LI Gang1,2(), CAI Zehao1, SUN Huaxun3, ZHAO Zhenbing2
Received:
2024-06-10
Revised:
2024-09-05
Online:
2024-10-31
Published:
2024-10-31
About author:
First author contact:LI Gang (1980-), associate professor, Ph.D. His main research interests cover AI for power system and electric power vision. E-mail:ququ_er2003@126.com
Supported by:
CLC Number:
LI Gang, CAI Zehao, SUN Huaxun, ZHAO Zhenbing. Research on defect detection of transmission line fittings based on improved YOLOv8 and semantic knowledge fusion[J]. Journal of Graphics, 2024, 45(5): 979-986.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024050979
标签名称 | Wire1 | Wire2 | Wire3 | Insulator1 | Insulator2 | Insulator3 | Insulator4 | Insulator5 | Insulator6 | U |
---|---|---|---|---|---|---|---|---|---|---|
B@front@normal | 260 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
A@front@normal | 156 | 48 | 0 | 103 | 118 | 13 | 25 | 47 | 3 | 14 |
A@sideB@normal | 28 | 24 | 1 | 104 | 18 | 128 | 18 | 54 | 27 | 12 |
A@sideA@normal | 10 | 12 | 0 | 58 | 2 | 103 | 10 | 19 | 12 | 166 |
A@sideAB@errorA | 520 | 1 | 4 | 23 | 20 | 76 | 4 | 6 | 7 | 27 |
A@front@error_A | 94 | 41 | 0 | 53 | 12 | 3 | 2 | 1 | 0 | 9 |
A@sideB@error_B | 2 | 1 | 0 | 10 | 3 | 14 | 1 | 5 | 3 | 0 |
A@front@error_B | 6 | 4 | 0 | 19 | 9 | 1 | 3 | 2 | 0 | 0 |
B@front@error_B | 180 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
B@front@error_C | 106 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Table 1 Distribution statistics of load-bearing fittings and defect types
标签名称 | Wire1 | Wire2 | Wire3 | Insulator1 | Insulator2 | Insulator3 | Insulator4 | Insulator5 | Insulator6 | U |
---|---|---|---|---|---|---|---|---|---|---|
B@front@normal | 260 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
A@front@normal | 156 | 48 | 0 | 103 | 118 | 13 | 25 | 47 | 3 | 14 |
A@sideB@normal | 28 | 24 | 1 | 104 | 18 | 128 | 18 | 54 | 27 | 12 |
A@sideA@normal | 10 | 12 | 0 | 58 | 2 | 103 | 10 | 19 | 12 | 166 |
A@sideAB@errorA | 520 | 1 | 4 | 23 | 20 | 76 | 4 | 6 | 7 | 27 |
A@front@error_A | 94 | 41 | 0 | 53 | 12 | 3 | 2 | 1 | 0 | 9 |
A@sideB@error_B | 2 | 1 | 0 | 10 | 3 | 14 | 1 | 5 | 3 | 0 |
A@front@error_B | 6 | 4 | 0 | 19 | 9 | 1 | 3 | 2 | 0 | 0 |
B@front@error_B | 180 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
B@front@error_C | 106 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
名称 | 型号 |
---|---|
操作系统 | Windows 10家庭版 |
显示适配器 | GeForce RTX 4060 12 G |
CUDA | 11.6 |
Python | 3.8 |
Pytorch | 1.13.1 |
Torchvision | 0.14.1 |
Batch size | 8 |
Epoch | 200 |
Table 2 Experimental environment
名称 | 型号 |
---|---|
操作系统 | Windows 10家庭版 |
显示适配器 | GeForce RTX 4060 12 G |
CUDA | 11.6 |
Python | 3.8 |
Pytorch | 1.13.1 |
Torchvision | 0.14.1 |
Batch size | 8 |
Epoch | 200 |
缺陷种类 | 样本数量 | 标签名称 |
---|---|---|
正常 | 263 | B@front@normal |
527 | A@front@normal | |
414 | A@side_B@normal | |
392 | A@side_A@normal | |
销子缺失 | 688 | A@side_AB@error_A |
215 | A@front@error_A | |
销子失效 | 39 | A@side_B@error_B |
44 | A@front@error_B | |
180 | B@front@error_B | |
垫片缺失 | 134 | B@front@error_C |
Table 3 Classification and statistics ofdataset labels
缺陷种类 | 样本数量 | 标签名称 |
---|---|---|
正常 | 263 | B@front@normal |
527 | A@front@normal | |
414 | A@side_B@normal | |
392 | A@side_A@normal | |
销子缺失 | 688 | A@side_AB@error_A |
215 | A@front@error_A | |
销子失效 | 39 | A@side_B@error_B |
44 | A@front@error_B | |
180 | B@front@error_B | |
垫片缺失 | 134 | B@front@error_C |
Model | mAP/% | FPS | GFLOPs |
---|---|---|---|
YOLOv8n | 81.5 | 342.4 | 12.0 |
YOLOv8s | 84.8 | 154.8 | 42.5 |
YOLOv8m | 84.8 | 70.0 | 110.0 |
YOLOv8l | 84.0 | 45.7 | 220.2 |
YOLOv8x | 85.9 | 30.1 | 343.7 |
Table 4 Baseline model training results
Model | mAP/% | FPS | GFLOPs |
---|---|---|---|
YOLOv8n | 81.5 | 342.4 | 12.0 |
YOLOv8s | 84.8 | 154.8 | 42.5 |
YOLOv8m | 84.8 | 70.0 | 110.0 |
YOLOv8l | 84.0 | 45.7 | 220.2 |
YOLOv8x | 85.9 | 30.1 | 343.7 |
YOLOV8s | 改进1 | 改进2 | AP/% | mAP/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
类1 | 类2 | 类3 | 类4 | 类5 | 类6 | 类7 | 类8 | 类9 | 类10 | ||||
√ | - | - | 99.5 | 89.4 | 98.4 | 92.9 | 89.4 | 81.5 | 91.4 | 40.0 | 65.5 | 99.5 | 84.8 |
√ | √ | - | 98.2 | 86.5 | 96.5 | 95.1 | 87.0 | 81.0 | 93.3 | 48.3 | 72.0 | 99.5 | 85.8 |
√ | - | √ | 98.1 | 87.3 | 97.7 | 95.1 | 90.0 | 80.9 | 97.5 | 36.5 | 79.4 | 99.5 | 86.2 |
√ | √ | √ | 98.5 | 87.8 | 99.0 | 97.1 | 89.5 | 87.5 | 90.9 | 55.2 | 65.4 | 99.5 | 87.0 |
Table 5 Ablation test results
YOLOV8s | 改进1 | 改进2 | AP/% | mAP/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
类1 | 类2 | 类3 | 类4 | 类5 | 类6 | 类7 | 类8 | 类9 | 类10 | ||||
√ | - | - | 99.5 | 89.4 | 98.4 | 92.9 | 89.4 | 81.5 | 91.4 | 40.0 | 65.5 | 99.5 | 84.8 |
√ | √ | - | 98.2 | 86.5 | 96.5 | 95.1 | 87.0 | 81.0 | 93.3 | 48.3 | 72.0 | 99.5 | 85.8 |
√ | - | √ | 98.1 | 87.3 | 97.7 | 95.1 | 90.0 | 80.9 | 97.5 | 36.5 | 79.4 | 99.5 | 86.2 |
√ | √ | √ | 98.5 | 87.8 | 99.0 | 97.1 | 89.5 | 87.5 | 90.9 | 55.2 | 65.4 | 99.5 | 87.0 |
α取值 | AP/% | mAP/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
类1 | 类2 | 类3 | 类4 | 类5 | 类6 | 类7 | 类8 | 类9 | 类10 | ||
2.7 | 99.5 | 87.7 | 98.0 | 95.3 | 87.0 | 84.7 | 95.3 | 43.5 | 58.3 | 99.5 | 84.9 |
2.8 | 96.9 | 91.6 | 96.3 | 95.4 | 92.8 | 87.7 | 97.0 | 47.7 | 64.2 | 99.5 | 86.9 |
2.9 | 99.3 | 90.0 | 98.1 | 95.2 | 90.4 | 87.2 | 99.5 | 47.9 | 65.5 | 99.5 | 87.3 |
3.0 | 98.4 | 90.5 | 98.9 | 95.8 | 91.9 | 91.2 | 90.7 | 64.6 | 66.9 | 99.5 | 88.8 |
3.5 | 96.7 | 92.5 | 99.3 | 96.7 | 93.8 | 86.9 | 90.3 | 47.1 | 65.0 | 99.5 | 86.8 |
4.0 | 96.7 | 89.6 | 98.6 | 97.5 | 94.2 | 85.6 | 93.0 | 43.3 | 74.6 | 99.5 | 87.3 |
Table 6 Experimental results of hyperparameter adjustment
α取值 | AP/% | mAP/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
类1 | 类2 | 类3 | 类4 | 类5 | 类6 | 类7 | 类8 | 类9 | 类10 | ||
2.7 | 99.5 | 87.7 | 98.0 | 95.3 | 87.0 | 84.7 | 95.3 | 43.5 | 58.3 | 99.5 | 84.9 |
2.8 | 96.9 | 91.6 | 96.3 | 95.4 | 92.8 | 87.7 | 97.0 | 47.7 | 64.2 | 99.5 | 86.9 |
2.9 | 99.3 | 90.0 | 98.1 | 95.2 | 90.4 | 87.2 | 99.5 | 47.9 | 65.5 | 99.5 | 87.3 |
3.0 | 98.4 | 90.5 | 98.9 | 95.8 | 91.9 | 91.2 | 90.7 | 64.6 | 66.9 | 99.5 | 88.8 |
3.5 | 96.7 | 92.5 | 99.3 | 96.7 | 93.8 | 86.9 | 90.3 | 47.1 | 65.0 | 99.5 | 86.8 |
4.0 | 96.7 | 89.6 | 98.6 | 97.5 | 94.2 | 85.6 | 93.0 | 43.3 | 74.6 | 99.5 | 87.3 |
模型名称 | AP/% | mAP/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
类1 | 类2 | 类3 | 类4 | 类5 | 类6 | 类7 | 类8 | 类9 | 类10 | ||
YOLOv5 | 97.0 | 85.2 | 96.4 | 90.0 | 88.9 | 86.8 | 90.6 | 54 | 63.7 | 99.5 | 85.2 |
YOLOv5改进后 | 97.2 | 85.3 | 96.7 | 92.6 | 87.9 | 80.6 | 91.5 | 65.8 | 67.4 | 99.5 | 86.4 |
YOLOv3 | 98.0 | 91.3 | 98.1 | 94.7 | 87.0 | 79.9 | 96.5 | 32.6 | 64.6 | 99.5 | 84.2 |
YOLOv3改进后 | 99.0 | 88.9 | 96.8 | 94.0 | 93.1 | 83.0 | 99.5 | 41.7 | 70.0 | 99.5 | 86.5 |
YOLOv8+AIFI | 98.0 | 86.3 | 98.7 | 93.6 | 92.1 | 85.6 | 93.2 | 19.9 | 67.4 | 99.5 | 83.4 |
YOLOv8+DAttention | 99.1 | 86.3 | 96.3 | 95.3 | 88.5 | 81.1 | 97.9 | 16.6 | 35.4 | 99.5 | 79.6 |
YOLOv8+GoldYolo | 93.0 | 88.8 | 97.3 | 93.1 | 84.4 | 72.8 | 93.2 | 28.9 | 62.9 | 99.5 | 81.4 |
Table 7 Comparative experimental results
模型名称 | AP/% | mAP/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
类1 | 类2 | 类3 | 类4 | 类5 | 类6 | 类7 | 类8 | 类9 | 类10 | ||
YOLOv5 | 97.0 | 85.2 | 96.4 | 90.0 | 88.9 | 86.8 | 90.6 | 54 | 63.7 | 99.5 | 85.2 |
YOLOv5改进后 | 97.2 | 85.3 | 96.7 | 92.6 | 87.9 | 80.6 | 91.5 | 65.8 | 67.4 | 99.5 | 86.4 |
YOLOv3 | 98.0 | 91.3 | 98.1 | 94.7 | 87.0 | 79.9 | 96.5 | 32.6 | 64.6 | 99.5 | 84.2 |
YOLOv3改进后 | 99.0 | 88.9 | 96.8 | 94.0 | 93.1 | 83.0 | 99.5 | 41.7 | 70.0 | 99.5 | 86.5 |
YOLOv8+AIFI | 98.0 | 86.3 | 98.7 | 93.6 | 92.1 | 85.6 | 93.2 | 19.9 | 67.4 | 99.5 | 83.4 |
YOLOv8+DAttention | 99.1 | 86.3 | 96.3 | 95.3 | 88.5 | 81.1 | 97.9 | 16.6 | 35.4 | 99.5 | 79.6 |
YOLOv8+GoldYolo | 93.0 | 88.8 | 97.3 | 93.1 | 84.4 | 72.8 | 93.2 | 28.9 | 62.9 | 99.5 | 81.4 |
[1] |
赵振兵, 张薇, 翟永杰, 等. 电力视觉技术的概念、研究现状与展望[J]. 电力科学与工程, 2020, 36(1): 1-8.
DOI |
ZHAO Z B, ZHANG W, ZHAI Y J, et al. Concept, research status and prospect of electric power vision technology[J]. Electric Power Science and Engineering, 2020, 36(1): 1-8 (in Chinese). | |
[2] | 赵振兵, 蒋志钢, 李延旭, 等. 输电线路部件视觉缺陷检测综述[J]. 中国图象图形学报, 2021, 26(11): 2545-2560. |
ZHAO Z B, JIANG Z G, LI Y X, et al. Overview of visual defect detection of transmission line components[J]. Journal of Image and Graphics, 2021, 26(11): 2545-2560 (in Chinese). | |
[3] | 赵振兵, 王睿, 赵文清, 等. 基于图知识推理的输电线路缺销螺栓识别方法[J]. 智能系统学报, 2023, 18(2): 372-380. |
ZHAO Z B, WANG R, ZHAO W Q, et al. Pin-missing bolts recognition method for transmission lines based on graph knowledge reasoning[J]. CAAI Transactions on Intelligent Systems, 2023, 18(2): 372-380 (in Chinese). | |
[4] |
翟永杰, 郭聪彬, 王乾铭, 等. 基于隐含空间知识融合的输电线路多金具检测方法[J]. 图学学报, 2023, 44(5): 918-927.
DOI |
ZHAI Y J, GUO C B, WANG Q M, et al. Multi-fitting detection method for transmission lines based on implicit spatial knowledge fusion[J]. Journal of Graphics, 2023, 44(5): 918-927 (in Chinese). | |
[5] | 王亚茹, 冯利龙, 宋晓轲, 等. TFD-YOLOv8: 一种用于输电线路的异物检测方法[EB/OL]. [2024-07-24]. http://kns.cnki.net/kcms/detail/10.1034.T.20240703.1534.002.html. |
WANG YR, FENG LL, SONG XK, et al. TFD-YOLOv8: a transmission line foreign object detection method[EB/OL]. [2024-07-24]. http://kns.cnki.net/kcms/detail/10.1034.T.20240 703.1534.002.html (in Chinese). | |
[6] | LIU S, LIU L W, SHANG F, et al. Research and implementation of birds and floating objects target detection technology in transmission lines[C]// 2022 10th IEEE Joint International Information Technology and Artificial Intelligence Conference. New York: IEEE Press, 2022: 2528-2532. |
[7] | BI Z Q, JING L N, SUN C, et al. YOLOX++ for transmission line abnormal target detection[J]. IEEE Access, 2023, 11: 38157-38167. |
[8] | 张珂, 周睿恒, 石超君, 等. 自监督E-Swin的输电线路金具检测[J]. 中国图象图形学报, 2023, 28(10): 3064-3076. |
ZHANG K, ZHOU R H, SHI C J, et al. Self-supervised E-Swin based transmission line fittings detection[J]. Journal of Image and Graphics, 2023, 28(10): 3064-3076 (in Chinese). | |
[9] | CHEN D Q, GUOX H, HUANGP, et al. Safety distance analysis of 500kV transmission line tower UAV patrol inspection[J]. IEEE Letters on Electromagnetic Compatibility Practice and Applications, 2020, 2(4): 124-128. |
[10] | 苟军年, 杜愫愫, 王世铎, 等. 轻量化特征融合的CenterNet输电线路绝缘子自爆缺陷检测[J]. 北京航空航天大学学报, 2024, 50(7): 2161-2171. |
GOU J N, DU SS, WANG S D, et al. Insulator self-explosion detection in transmission line based on CenterNet fusing lightweight features[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(7): 2161-2171 (in Chinese). | |
[11] | YANG Q F, ZHANG Z Q, YAN L, et al. Lightweight Bird's nest location recognition method based on YOLOv4- tiny[C]// 2021 IEEE International Conference on Electrical Engineering and Mechatronics Technology. New York: IEEE Press, 2021: 402-405. |
[12] | 赵振兵, 熊静, 徐厚东, 等. 融合结构推理的深度模型输电线路金具及其缺陷检测[J]. 高电压技术, 2023, 49(8): 3346-3353. |
ZHAO Z B, XIONG J, XU H D, et al. Integrating structural reasoning for deep model transmission line fittings and their defects detection[J]. High Voltage Engineering, 2023, 49(8): 3346-3353 (in Chinese). | |
[13] | 戚银城, 耿劭锋, 赵振兵, 等. 基于特征迁移的螺栓图像超分辨率处理方法[J]. 智能系统学报, 2023, 18(4): 858-866. |
QIY C, GENG S F, ZHAO Z B, et al. A method for super resolution processing of bolt image based on feature transfer[J]. CAAI Transactions on Intelligent Systems, 2023, 18(4): 858-866 (in Chinese). | |
[14] |
李刚, 张运涛, 汪文凯, 等. 采用DETR与先验知识融合的输电线路螺栓缺陷检测方法[J]. 图学学报, 2023, 44(3): 438-447.
DOI |
LI G, ZHANG Y T, WANG W K, et al. Defect detection method of transmission line bolts based on DETR and prior knowledge fusion[J]. Journal of Graphics, 2023, 44(3): 438-447 (in Chinese).
DOI |
|
[15] | 刘起源, 路锦正, 黄炳森. 基于特征融合和损失优化的点云语义分割网络[J]. 计算机技术与发展, 2024, 34(5): 66-72. |
LIUQ Y, LU J Z, HUANG B S. Point cloud semantic segmentation network based on feature fusion and loss optimization[J]. Computer Technology and Development, 2024, 34(5): 66-72 (in Chinese). | |
[16] | 骆俊锋. 结合高层语义与底层颜色特征的图像检索方法[J]. 电子元器件与信息技术, 2021, 5(3): 188-190. |
LUO J F. Image retrieval method combining high-level semantics and low-level color features[J]. Electronic Component and Information Technology, 2021, 5(3): 188-190 (in Chinese). | |
[17] | 禹鑫燚, 林密, 卢江平, 等. 基于向量叉乘标签分配的遥感图像目标检测算法[J]. 高技术通讯, 2024, 34(2): 132-142. |
YU X Y, LIN M, LU J P, et al. Remote sensing object detection algorithm based on vector cross product label assignment[J]. Chinese High Technology Letters, 2024, 34(2): 132-142 (in Chinese). | |
[18] | CHEN P Y, HSIEH J W, WANG C Y, et al. Residual Bi-fusion feature pyramid network for accurate single-shot object detection[EB/OL]. [2024-04-10]. https://arxiv.org/abs/1911.12051. |
[19] | LI C Y, LI L L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. [2024-01-12]. https://arxiv.org/abs/2209.02976. |
[1] | LI Zhenfeng, FU Shichen, XU Le, MENG Bo, ZHANG Xin, QING Jianjun. Research on gangue target detection algorithm based on MBI-YOLOv8 [J]. Journal of Graphics, 2024, 45(6): 1301-1312. |
[2] | YAN Jianhong, RAN Tongxiao. Lightweight UAV image target detection algorithm based on YOLOv8 [J]. Journal of Graphics, 2024, 45(6): 1328-1337. |
[3] | HU Fengkuo, YE Lan, TAN Xianfeng, ZHANG Qinzhan, HU Zhixin, FANG Qing, WANG Lei, MAN Xiaofeng. A refined YOLOv8-based algorithm for lightweight pavement disease detection [J]. Journal of Graphics, 2024, 45(5): 892-900. |
[4] | WANG Yaru, FENG Lilong, SONG Xiaoke, QU Zhuo, YANG Ke, WANG Qianming, ZHAI Yongjie. TFD-YOLOv8: a transmission line foreign object detection method [J]. Journal of Graphics, 2024, 45(5): 901-912. |
[5] | LIU Yiyan, HAO Tingnan, HE Chen, CHANG Yingjie. Photovoltaic cell surface defect detection based on DBBR-YOLO [J]. Journal of Graphics, 2024, 45(5): 913-921. |
[6] | HU Xin, CHANG Yashu, QIN Hao, XIAO Jian, CHENG Hongliang. Binocular ranging method based on improved YOLOv8 and GMM image point set matching [J]. Journal of Graphics, 2024, 45(4): 714-725. |
[7] | NIU Weihua, GUO Xun. Rotating target detection algorithm in ship remote sensing images based on YOLOv8 [J]. Journal of Graphics, 2024, 45(4): 726-735. |
[8] | ZENG Zhichao, XU Yue, WANG Jingyu, YE Yuanlong, HUANG Zhikai, WANG Huan. A water surface target detection algorithm based on SOE-YOLO lightweight network [J]. Journal of Graphics, 2024, 45(4): 736-744. |
[9] | WU Bing, TIAN Ying. Research on multi-scale road damage detection algorithm based on attention mechanism [J]. Journal of Graphics, 2024, 45(4): 770-778. |
[10] | ZHU Qiangjun, HU Bin, WANG Huilan, WANG Yang. Detection of traffic signs based on lightweight YOLOv8s [J]. Journal of Graphics, 2024, 45(3): 422-432. |
[11] | CUI Kebin, JIAO Jingyi. Steel surface defect detection algorithm based on MCB-FAH-YOLOv8 [J]. Journal of Graphics, 2024, 45(1): 112-125. |
[12] | WANG Da-fu, WANG Jing, SHI Yu-kai, DENG Zhi-wen, JIA Zhi-yong. Research on image privacy detection based on deep transfer learning [J]. Journal of Graphics, 2023, 44(6): 1112-1120. |
[13] | GAO Ang, LIANG Xing-zhu, XIA Chen-xing, ZHANG Chun-jiong. A dense pedestrian detection algorithm with improved YOLOv8 [J]. Journal of Graphics, 2023, 44(5): 890-898. |
[14] | LI Gang, ZHANG Yun-tao, WANG Wen-kai, ZHANG Dong-yang. Defect detection method of transmission line bolts based on DETR and prior knowledge fusion [J]. Journal of Graphics, 2023, 44(3): 438-447. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||