欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (1): 1-12.DOI: 10.11996/JG.j.2095-302X.2025010001

• 图像处理与计算机视觉 •    下一篇

基于改进YOLOv8的配电线路绝缘子缺陷级联检测方法

赵振兵1,2,3(), 韩钰1, 唐辰康1   

  1. 1.华北电力大学电子与通信工程系,河北 保定 071003
    2.华北电力大学河北省电力物联网技术重点实验室,河北 保定 071003
    3.华北电力大学复杂能源系统智能计算教育部工程研究中心,河北 保定 071003
  • 收稿日期:2024-07-23 接受日期:2024-10-07 出版日期:2025-02-28 发布日期:2025-02-14
  • 第一作者:赵振兵(1979-),男,教授,博士。主要研究方向为电力视觉技术等。E-mail:zhaozhenbing@ncepu.edu.cn
  • 基金资助:
    国家自然科学基金(U21A20486);国家自然科学基金(62373151);国家自然科学基金(62371188);国家自然科学基金(62303184);河北省自然科学基金(F2021502008);河北省自然科学基金(F2021502013);中央高校基本科研业务费专项资金(2023JC006)

Cascade detection method for insulator defects in distribution lines based on improved YOLOv8

ZHAO Zhenbing1,2,3(), HAN Yu1, TANG Chenkang1   

  1. 1. Department of Electronic and Communication Engineering, North China Electric Power University, Baoding Hebei 071003, China
    2. Hebei Key Laboratory of Power Internet of Things Technology, North China Electric Power University, Baoding Hebei 071003, China
    3. Engineering Research Center of Intelligent Computing for Complex Energy Systems, Ministry of Education, North China Electric Power University, Baoding Hebei 071003, China
  • Received:2024-07-23 Accepted:2024-10-07 Published:2025-02-28 Online:2025-02-14
  • First author:ZHAO Zhenbing (1979-), professor, Ph.D. His main research interests cover computer vision technology in electric power system, etc. E-mail:zhaozhenbing@ncepu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(U21A20486);National Natural Science Foundation of China(62373151);National Natural Science Foundation of China(62371188);National Natural Science Foundation of China(62303184);Natural Science Foundation of Hebei Province of China(F2021502008);Natural Science Foundation of Hebei Province of China(F2021502013);Fundamental Research Funds for the Central Universities(2023JC006)

摘要:

针对无人机航拍配电线路时因安全限制导致背景复杂动态、绝缘子缺陷形态不规则、缺陷特征不明显与缺陷信息难捕捉的问题,提出了一种基于改进YOLOv8的配电线路绝缘子缺陷级联检测方法。在第一阶段,通过YOLOv8模型自动提取绝缘子部件图像,为第二阶段绝缘子缺陷检测提供准确的输入,摒除冗余背景信息的影响。在第二阶段,利用ConvNeXt V2主干网络提升模型对不规则形态目标的识别能力,提升网络的特征提取能力;通过在特征融合过程中加入边缘知识融合模块,精准提取缺陷边缘信息;设计自适应形状IoU增强方法,采用自适应训练样本选择策略优化正负样本比例,并使用充分考虑边界框回归样本自身形状和尺度等固有属性的Shape-IoU损失函数,使模型聚焦目标本质特征,改善模型漏检误检情况,提高检测的准确性和鲁棒性。经实验证明,基于改进YOLOv8的配电线路绝缘子缺陷级联检测方法比基线模型平均精确率提高了17.3%,有效提升配电线路绝缘子缺陷检测准确率,为电力系统的安全维护提供了有力的技术支持。

关键词: 配电线路, 绝缘子缺陷检测, YOLOv8, ConvNeXt V2, 边缘知识融合, 自适应形状IoU增强

Abstract:

To address the issues of complex and dynamic backgrounds due to safety constraints, irregular shapes of insulator defects, indistinct defect features, and difficulty in capturing defect information during aerial photography of power distribution lines using unmanned aerial vehicles, a cascaded detection method for insulator defects in power distribution lines based on an improved YOLOv8 was proposed. In the first stage, the YOLOv8 model automatically extracted images of insulator components, providing accurate inputs for the second stage of insulator defect detection and eliminating the influence of redundant background information. In the second stage, the ConvNeXt V2 backbone network was utilized to enhance the model's ability to recognize irregularly shaped targets and improve its feature extraction capabilities. By incorporating the edge knowledge fusion module into the feature fusion process, precise extraction of defect edge information was achieved. Furthermore, an adaptive shape IoU enhancement method was designed, adopting an adaptive training sample selection strategy to optimize the ratio of positive and negative samples. Additionally, the Shape-IoU loss function was employed, considering the inherent attributes of bounding box regression samples such as shape and scale, enabling the model to focus on essential target features, thereby improving the detection accuracy and robustness by reducing missed and false detections. Experimental results demonstrated that the proposed cascaded detection method for insulator defects in power distribution lines based on the improved YOLOv8 achieved a 17.3% increase in average precision compared to baseline models, effectively enhancing the accuracy of insulator defect detection in power distribution lines and providing robust technical support for the safe maintenance of power systems.

Key words: distribution lines, insulator defect detection, YOLOv8, ConvNeXt V2, edge knowledge fusion, adaptive shape IoU enhancement

中图分类号: