[1] |
PROVOT X. Deformation constraints in a mass-spring model to describe rigid cloth behavior[EB/OL]. [2023-01-13]. https://xueshu.baidu.com/usercenter/paper/show?paperid=1e550v00em0c0pk0w10u0850mb695262&site=xueshu_se.
|
[2] |
ROHMER D, POPA T, CANI M P, et al. Animation wrinkling: augmenting coarse cloth simulations with realistic-looking wrinkles[J]. ACM Transactions on Graphics, 2010, 29(6): 157: 1-157: 8.
|
[3] |
WU L H, WU B T, YANG Y, et al. A safe and fast repulsion method for GPU-based cloth self collisions[J]. ACM Transactions on Graphics, 2020, 40(1): 1-18.
|
[4] |
CLO Virtual Fashion. Marvelous designer[EB/OL]. [2023-06-30]. https://www.marvelousdesigner.2023.6.30.
|
[5] |
WANG T Y, SHAO T J, FU K, et al. Learning an intrinsic garment space for interactive authoring of garment animation[J]. ACM Transactions on Graphics, 2019, 38(6): 220: 1-220: 12.
|
[6] |
ANGUELOV D, SRINIVASAN P, KOLLER D, et al. SCAPE: shape completion and animation of people[C]// SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers. New York: ACM, 2005: 408-416.
|
[7] |
LOPER M, MAHMOOD N, ROMERO J, et al. SMPL: a skinned multi-person linear model[M]// Seminal Graphics Papers: Pushing the Boundaries, Volume 2. New York: ACM, 2023: 851-866.
|
[8] |
PATEL C, LIAO Z, PONS-MOLL G. TailorNet: predicting clothing in 3D as a function of human pose, shape and garment style[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 7365-7375.
|
[9] |
SAITO S, YANG J L, MA Q L, et al. SCANimate: weakly supervised learning of skinned clothed avatar networks[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 2886-2897.
|
[10] |
SANTESTEBAN I, OTADUY M A, CASAS D. Learning- based animation of clothing for virtual try-on[J]. Computer Graphics Forum, 2019, 38(2): 355-366.
|
[11] |
LI C, TANG M, TONG R F, et al. P-cloth: interactive complex cloth simulation on multi-GPU systems using dynamic matrix assembly and pipelined implicit integrators[J]. ACM Transactions on Graphics, 2020, 39(6): 180: 1-180: 15.
|
[12] |
WANG H M. GPU-based simulation of cloth wrinkles at submillimeter levels[J]. ACM Transactions on Graphics, 2021, 40(4): 169: 1-169: 14.
|
[13] |
ZHU H M, CAO Y, JIN H, et al. Deep Fashion3D: a dataset and benchmark for 3D garment reconstruction from single images[C]// European Conference on Computer Vision. Cham: Springer, 2020: 512-530.
|
[14] |
HE Y, XIE H R, MIYATA K. Sketch2Cloth: sketch-based 3D garment generation with unsigned distance fields[EB/OL]. [2023-02-10]. http://arxiv.org/abs/2303.00167.pdf.
|
[15] |
BERTICHE H, MADADI M, ESCALERA S. PBNS: physically based neural simulator for unsupervised garment pose space deformation[EB/OL]. [2023-01-13]. http://arxiv.org/abs/2012.11310.pdf.
|
[16] |
PAN X Y, MAI J M, JIANG X W, et al. Predicting loose-fitting garment deformations using bone-driven motion networks[C]// ACM SIGGRAPH 2022 Conference Proceedings. New York: ACM, 2022: 1-10.
|
[17] |
LI Y D, TANG M, YANG Y, et al. N-cloth: predicting 3D cloth deformation with mesh-based networks[J]. Computer Graphics Forum, 2022, 41(2): 547-558.
|
[18] |
MA Q L, YANG J L, BLACK M J, et al. Neural point-based shape modeling of humans in challenging clothing[C]// 2022 International Conference on 3D Vision (3DV). New York: IEEE Press, 2022: 679-689.
|
[19] |
TIWARI L, BHOWMICK B. DeepDraper: fast and accurate 3D garment draping over a 3D human body[C]// 2021 IEEE/CVF International Conference on Computer Vision Workshops. New York: IEEE Press, 2021: 1416-1426.
|
[20] |
CHONG T, SHEN I C, UMETANI N, et al. Per garment capture and synthesis for real-time virtual try-on[C]// UIST ’21: The 34th Annual ACM Symposium on User Interface Software and Technology. New York: ACM, 2021: 457-469.
|
[21] |
WU Z H, LIN G S, TAO Q Y, et al. M2E-try on net: fashion from model to everyone[C]// The 27th ACM International Conference on Multimedia. New York: ACM, 2019: 293-301.
|
[22] |
PETROVICH M, BLACK M J, VAROL G. Action-conditioned 3D human motion synthesis with transformer VAE[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 10985-10995.
|
[23] |
TEVET G, RAAB S, GORDON B, et al. Human motion diffusion model[EB/OL]. [2023-01-13]. http://arxiv.org/abs/2209.14916.pdf.
|
[24] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all You need[C]// The 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000-6010.
|
[25] |
MAHMOOD N, GHORBANI N, TROJE N F, et al. AMASS: archive of motion capture as surface shapes[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 5441-5450.
|
[26] |
VIDAURRE R, SANTESTEBAN I, GARCES E, et al. Fully convolutional graph neural networks for parametric virtual try-on[J]. Computer Graphics Forum, 2020, 39(8): 145-156.
|
[27] |
ALLEN B, CURLESS B, POPOVIĆ Z. The space of human body shapes: reconstruction and parameterization from range scans[J]. ACM Transactions on Graphics (TOG), 2003, 22(3): 587-594.
|