[1] |
许一帆, 高文焕, 龙水铨. 全介质自承式光缆ADSS支架的设计[J]. 集成电路应用, 2023, 40(7): 288-290.
|
|
XU Y F, GAO W H, LONG S Q. Design of ADSS bracket for all dielectric self-supporting optical cables[J]. Application of IC, 2023, 40(7): 288-290 (in Chinese).
|
[2] |
杨绍哲, 纪萍, 刘喜军, 等. 全介质自承式光缆电腐蚀预防机制有限元分析[J]. 上海电气技术, 2023, 16(1): 37-43.
|
|
YANG S Z, JI P, LIU X J, et al. Finite element analysis of electrical corrosion prevention mechanism of ADSS optical cable[J]. Journal of Shanghai Electric Technology, 2023, 16(1): 37-43 (in Chinese).
|
[3] |
郑建军, 刘俊, 史贤达, 等. 在运ADSS光缆断裂原因分析[J]. 黑龙江电力, 2021, 43(5): 391-393.
|
|
ZHANG J J, LIU J, SHI X D, et al. Cause analysis of ADSS optical cable fracture in operation[J]. Heilongjiang Electric Power, 2021, 43(5): 391-393 (in Chinese).
|
[4] |
DU B X. Discharge energy and dc tracking resistance of organic insulating materials[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2001, 8(6): 897-901.
|
[5] |
蔡嘉磊, 茅智慧, 李君, 等. 基于深度学习的目标检测算法与应用综述[J]. 网络安全技术与应用, 2023(11): 41-45.
|
|
CAI J L, MAO Z H, LI J, et al. A review of deep learning based target detection algorithms and applications[J]. Network Security Technology & Application, 2023(11): 41-45 (in Chinese).
|
[6] |
CHEN X H, LIU N, YOU B, et al. A novel method for surface defect inspection of optic cable with short-wave infrared illuminance[J]. Infrared Physics & Technology, 2016, 77: 456-463.
|
[7] |
QU L Q, MU H B, ZOU X Y, et al. A method for online monitoring intermittent cable defects based on SSTDR[J]. Energy Reports, 2023, 9: 904-911.
|
[8] |
WANG S R, CHU J W, SU X, et al. Cable defect detection technology based on low frequency method and damped oscillation wave[C]// The 3rd International Academic Exchange Conference on Science and Technology Innovation. New York: IEEE Press, 2021: 1717-1720
|
[9] |
TABERNIK D, ŠELA S, SKVARČ J, et al. Segmentation-based deep-learning approach for surface-defect detection[J]. Journal of Intelligent Manufacturing, 2020, 31(3): 759-776.
|
[10] |
崔克彬, 焦静颐. 基于MCB-FAH-YOLOv8的钢材表面缺陷检测算法[J]. 图学学报, 2024, 45(1): 112-125.
DOI
|
|
CUI K B, JIAO J Y. Steel surface defect detection algorithm based on MCB-FAH-YOLOv8[J]. Journal of Graphics, 2024, 45(1): 112-125 (in Chinese).
DOI
|
[11] |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 8759-8768.
|
[12] |
MA S L, XU Y. MPDIoU: a loss for efficient and accurate bounding box regression[EB/OL]. [2024-04-26]. https://arxiv.org/abs/2307.07662.
|
[13] |
DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 764-773.
|
[14] |
ZHU X Z, HU H, LIN S, et al. Deformable ConvNets V2: more deformable, better results[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 9300-9308.
|
[15] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 936-944.
|
[16] |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// The 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
|
[17] |
熊举举, 徐杨, 范润泽, 等. 基于轻量化视觉Transformer的花卉识别[J]. 图学学报, 2023, 44(2): 271-279.
DOI
|
|
XIONG J J, XU Y, FAN R Z, et al. Flowers recognition based on lightweight visual transformer[J]. Journal of Graphics, 2023, 44(2): 271-279 (in Chinese).
DOI
|