图学学报 ›› 2025, Vol. 46 ›› Issue (3): 578-587.DOI: 10.11996/JG.j.2095-302X.2025030578
崔丽莎1(), 宋志文1, 姜晓恒1, 马鑫1, 陈恩庆2, 徐明亮1(
)
收稿日期:
2024-08-22
接受日期:
2025-01-12
出版日期:
2025-06-30
发布日期:
2025-06-13
通讯作者:
徐明亮(1981-),男,教授,博士。主要研究方向为大数据与人工智能等。E-mail:iexumingliang@zzu.edu.cn第一作者:
崔丽莎(1988-),女,副教授,博士。主要研究方向为人工智能、目标检测和工业质检。E-mail:ielscui@zzu.edu.cn
基金资助:
CUI Lisha1(), SONG Zhiwen1, JIANG Xiaoheng1, MA Xin1, CHEN Enqing2, XU Mingliang1(
)
Received:
2024-08-22
Accepted:
2025-01-12
Published:
2025-06-30
Online:
2025-06-13
Contact:
XU Mingliang (1981-), professor, Ph.D. His main research interests cover big data and artificial intelligence, etc. E-mail:iexumingliang@zzu.edu.cnFirst author:
CUI Lisha (1988-), associate professor, Ph.D. Her main research interests cover artificial intelligence, object detection, and industrial quality inspection. E-mail:ielscui@zzu.edu.cn
Supported by:
摘要:
针对部分缺陷特征微弱、边界模糊以及尺度变化大等问题,提出了一种基于边界和语义感知的表面缺陷分割方法ESNet。首先采用双分支网络分别学习图像的语义信息和细节信息,为有效利用2个分支的全面互补信息,提出了双边注意力指导模块(BAGM),通过语义分支的通道注意力指导细节分支学习上下文信息,而细节分支的空间注意力则指导语义分支捕捉底层细节信息。在语义分支中,设计了多尺度金字塔池化模块(MPPM),充分学习和编码多层次上下文信息。同时,在细节分支中,进一步引入了边界感知模块(EAM),通过底层预测的边界图指导高层特征图学习并增强边界信息。最后,为了有效融合细节特征和语义特征,提出了语义感知模块(SAM),缓解跨尺度特征融合的语义信息不对齐问题。在公开缺陷分割数据集NEU-Seg,MT-Defect和MSD上进行了大量实验,实验结果验证了该方法的有效性。
中图分类号:
崔丽莎, 宋志文, 姜晓恒, 马鑫, 陈恩庆, 徐明亮. 基于边界和语义感知的表面缺陷分割网络[J]. 图学学报, 2025, 46(3): 578-587.
CUI Lisha, SONG Zhiwen, JIANG Xiaoheng, MA Xin, CHEN Enqing, XU Mingliang. An edge and sematic-aware segmentation network for defect detection[J]. Journal of Graphics, 2025, 46(3): 578-587.
图1 分割数据集NEU-Seg中的缺陷示例((a)缺陷及其边界对比度低;(b)缺陷尺度变化大)
Fig. 1 Example of defects in the NEU-Seg segmentation dataset ((a) Defects and low boundary contrast; (b) Large variation in defect scale)
方法 | 主干网络 | Param/M | NEU-Seg | MT-Defect | MSD | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
mIoU/% | FLOPs/G | FPS | mIoU/% | FLOPs/G | FPS | mIoU/% | FLOPs/G | FPS | ||||
通用分割模型 | FCN-8s[ | VGG16 | 30.02 | 81.3 | 320.87 | 95.78 | 64.9 | 320.87 | 95.78 | 89.5 | 1423.97 | 28.18 |
DeepLabV3+[ | Xception | 55.94 | 83.1 | 248.98 | 26.07 | 77.1 | 248.98 | 26.07 | 90.0 | 1115.41 | 6.23 | |
PSPNet[ | ResNet50 | 46.70 | 82.6 | 184.73 | 47.17 | 61.4 | 184.73 | 47.17 | 90.1 | 827.54 | 11.94 | |
ICNet[ | ResNet50 | 26.24 | 81.1 | 36.97 | 98.54 | 60.1 | 36.97 | 98.54 | 77.4 | 166.17 | 37.21 | |
BiseNetV1[ | ResNet18 | 12.79 | 81.1 | 13.04 | 324.57 | 68.7 | 13.04 | 324.57 | 88.2 | 58.57 | 120.30 | |
BiseNetV2[ | - | 5.19 | 82.0 | 17.85 | 245.95 | 66.5 | 17.85 | 245.95 | 89.0 | 79.99 | 81.21 | |
STDCNet[ | STDC1 | 14.23 | 83.4 | 23.52 | 255.45 | 69.1 | 23.52 | 255.45 | 90.0 | 105.69 | 98.85 | |
ENet[ | - | 0.33 | 82.5 | 2.05 | 301.19 | 38.2 | 2.05 | 301.19 | 87.0 | 9.11 | 97.16 | |
DDRNet[ | - | 5.73 | 82.6 | 4.73 | 421.89 | 75.3 | 4.73 | 421.89 | 88.8 | 21.27 | 213.63 | |
缺陷分割模型 | FDSNet[ | - | 0.96 | 81.0 | 1.04 | 513.51 | 66.0 | 1.04 | 513.51 | 90.2 | 4.67 | 377.13 |
DBRNet[ | - | 3.34 | 83.1 | 3.44 | 404.03 | 70.5 | 3.44 | 404.30 | 89.1 | 15.57 | 188.12 | |
ESNet | MobileNetV3 | 5.11 | 85.1 | 6.43 | 231.09 | 80.0 | 6.43 | 231.09 | 91.0 | 28.85 | 75.83 |
表1 ESNet与其他方法在缺陷数据集上的实验结果对比
Table 1 Comparison of experimental results between ESNet and other methods on defect datasets
方法 | 主干网络 | Param/M | NEU-Seg | MT-Defect | MSD | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
mIoU/% | FLOPs/G | FPS | mIoU/% | FLOPs/G | FPS | mIoU/% | FLOPs/G | FPS | ||||
通用分割模型 | FCN-8s[ | VGG16 | 30.02 | 81.3 | 320.87 | 95.78 | 64.9 | 320.87 | 95.78 | 89.5 | 1423.97 | 28.18 |
DeepLabV3+[ | Xception | 55.94 | 83.1 | 248.98 | 26.07 | 77.1 | 248.98 | 26.07 | 90.0 | 1115.41 | 6.23 | |
PSPNet[ | ResNet50 | 46.70 | 82.6 | 184.73 | 47.17 | 61.4 | 184.73 | 47.17 | 90.1 | 827.54 | 11.94 | |
ICNet[ | ResNet50 | 26.24 | 81.1 | 36.97 | 98.54 | 60.1 | 36.97 | 98.54 | 77.4 | 166.17 | 37.21 | |
BiseNetV1[ | ResNet18 | 12.79 | 81.1 | 13.04 | 324.57 | 68.7 | 13.04 | 324.57 | 88.2 | 58.57 | 120.30 | |
BiseNetV2[ | - | 5.19 | 82.0 | 17.85 | 245.95 | 66.5 | 17.85 | 245.95 | 89.0 | 79.99 | 81.21 | |
STDCNet[ | STDC1 | 14.23 | 83.4 | 23.52 | 255.45 | 69.1 | 23.52 | 255.45 | 90.0 | 105.69 | 98.85 | |
ENet[ | - | 0.33 | 82.5 | 2.05 | 301.19 | 38.2 | 2.05 | 301.19 | 87.0 | 9.11 | 97.16 | |
DDRNet[ | - | 5.73 | 82.6 | 4.73 | 421.89 | 75.3 | 4.73 | 421.89 | 88.8 | 21.27 | 213.63 | |
缺陷分割模型 | FDSNet[ | - | 0.96 | 81.0 | 1.04 | 513.51 | 66.0 | 1.04 | 513.51 | 90.2 | 4.67 | 377.13 |
DBRNet[ | - | 3.34 | 83.1 | 3.44 | 404.03 | 70.5 | 3.44 | 404.30 | 89.1 | 15.57 | 188.12 | |
ESNet | MobileNetV3 | 5.11 | 85.1 | 6.43 | 231.09 | 80.0 | 6.43 | 231.09 | 91.0 | 28.85 | 75.83 |
图8 ESNet与其他方法在NEU-Seg上的可视化分割结果对比((a)输入图片;(b) FCN-8s;(c) DeepLabV3;(d) PSPNet;(e) ICNet;(f) BiseNetV1;(g) BiseNetV2;(h) STDCNet;(i) Enet;(j) FDSNet;(k) DBRNet;(l) DDRNet;(m)本文方法;(n)真实标注)
Fig. 8 Comparison of visual segmentation results between ESNet and other methods on NEU-Seg ((a) Input image; (b) FCN-8s; (c) DeepLabV3; (d) PSPNet; (e) ICNet; (f) BiseNetV1; (g) BiseNetV2; (h) STDCNet; (i) ENet; (j) FDSNet; (k) DBRNet; (l) DDRNet; (m) Ours; (n) Ground truth)
设备 | 显存/GB | 模型 | mIoU/% | FPS |
---|---|---|---|---|
TitanX | 12 | Baseline | 82.6 | 59.12 |
ESNet | 85.0 | 28.73 | ||
GTX 3090 | 24 | Baseline | 82.6 | 421.89 |
ESNet | 85.1 | 231.09 | ||
GTX 4090 | 24 | Baseline | 82.7 | 440.47 |
ESNet | 85.3 | 304.66 |
表2 不同设备上的实验结果
Table 2 Experimental results on different devices
设备 | 显存/GB | 模型 | mIoU/% | FPS |
---|---|---|---|---|
TitanX | 12 | Baseline | 82.6 | 59.12 |
ESNet | 85.0 | 28.73 | ||
GTX 3090 | 24 | Baseline | 82.6 | 421.89 |
ESNet | 85.1 | 231.09 | ||
GTX 4090 | 24 | Baseline | 82.7 | 440.47 |
ESNet | 85.3 | 304.66 |
图9 在NEU-Seg上特征图可视化结果((a)输入图片;(b) 真实标注;(c) FDSNet;(d) DBRNet;(e) DDRNet;(f)本文方法)
Fig. 9 Visualization results of feature maps on NEU-Seg ((a) Input image; (b) Ground truth; (c) FDSNet; (d) DBRNet; (e) DDRNet; (f) Ours)
行号 | Baseline | M3 | BAGM | EAM | SAM | MPPM | mIoU/% | Param/M |
---|---|---|---|---|---|---|---|---|
1 | √ | 82.6 | 5.73 | |||||
2 | √ | √ | 82.7 | 4.45 | ||||
3 | √ | √ | √ | 83.3 | 4.28 | |||
4 | √ | √ | √ | 83.8 | 5.56 | |||
5 | √ | √ | √ | 83.2 | 5.43 | |||
6 | √ | √ | √ | 83.0 | 3.87 | |||
7 | √ | √ | √ | √ | 83.9 | 5.26 | ||
8 | √ | √ | √ | √ | 84.2 | 5.39 | ||
9 | √ | √ | √ | √ | √ | 84.9 | 5.70 | |
10 | √ | √ | √ | √ | √ | √ | 85.1 | 5.11 |
表3 不同模块在NEU-Seg上的消融实验
Table 3 Ablation experiments of different modules on NEU-Seg
行号 | Baseline | M3 | BAGM | EAM | SAM | MPPM | mIoU/% | Param/M |
---|---|---|---|---|---|---|---|---|
1 | √ | 82.6 | 5.73 | |||||
2 | √ | √ | 82.7 | 4.45 | ||||
3 | √ | √ | √ | 83.3 | 4.28 | |||
4 | √ | √ | √ | 83.8 | 5.56 | |||
5 | √ | √ | √ | 83.2 | 5.43 | |||
6 | √ | √ | √ | 83.0 | 3.87 | |||
7 | √ | √ | √ | √ | 83.9 | 5.26 | ||
8 | √ | √ | √ | √ | 84.2 | 5.39 | ||
9 | √ | √ | √ | √ | √ | 84.9 | 5.70 | |
10 | √ | √ | √ | √ | √ | √ | 85.1 | 5.11 |
卷积核尺寸 | 输出尺寸 | mIoU/% |
---|---|---|
GPA,17,9,5,1 | 1,2,4,8,16 | 84.9 |
GPA,11,7,3,1 | 1,3,5,7,16 | 85.1 |
GPA,9,5,3,1 | 1,3,5,7,16 | 84.5 |
表4 不同大小池化核在NEU-Seg上的消融实验
Table 4 Ablation experiments of different sized pooling nuclei on NEU-Seg
卷积核尺寸 | 输出尺寸 | mIoU/% |
---|---|---|
GPA,17,9,5,1 | 1,2,4,8,16 | 84.9 |
GPA,11,7,3,1 | 1,3,5,7,16 | 85.1 |
GPA,9,5,3,1 | 1,3,5,7,16 | 84.5 |
模块 | mIoU/% | Param/M | FLOPs/G |
---|---|---|---|
BGA[ | 84.4 | 0.13 | 0.33 |
BF[ | 84.1 | 0.06 | 0.07 |
BAGM | 85.1 | 0.07 | 0.07 |
PPM[ | 84.8 | 1.26 | 0.30 |
DAPPM[ | 84.9 | 0.82 | 0.19 |
MPPM | 85.1 | 0.24 | 0.05 |
表5 本文模块与现有模块对比
Table 5 Comparison with existing modules
模块 | mIoU/% | Param/M | FLOPs/G |
---|---|---|---|
BGA[ | 84.4 | 0.13 | 0.33 |
BF[ | 84.1 | 0.06 | 0.07 |
BAGM | 85.1 | 0.07 | 0.07 |
PPM[ | 84.8 | 1.26 | 0.30 |
DAPPM[ | 84.9 | 0.82 | 0.19 |
MPPM | 85.1 | 0.24 | 0.05 |
主干网络 | mIoU/% | Param/M | FLOPs/G |
---|---|---|---|
StarNet-s2[ | 84.9 | 5.83 | 11.09 |
GhostNetV2 1.0×[ | 85.0 | 6.03 | 6.51 |
ResNet-18[ | 85.1 | 6.27 | 8.30 |
MobileNetV3-Large[ | 85.1 | 5.11 | 6.43 |
表6 不同主干网络对比
Table 6 Comparison of backbone networks
主干网络 | mIoU/% | Param/M | FLOPs/G |
---|---|---|---|
StarNet-s2[ | 84.9 | 5.83 | 11.09 |
GhostNetV2 1.0×[ | 85.0 | 6.03 | 6.51 |
ResNet-18[ | 85.1 | 6.27 | 8.30 |
MobileNetV3-Large[ | 85.1 | 5.11 | 6.43 |
[1] | LIU J H, FU M R, LIU F L, et al. Window feature-based two-stage defect identification using magnetic flux leakage measurements[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(1): 12-23. |
[2] | ZHANG H, JIN X T, WU Q M J, et al. Automatic visual detection system of railway surface defects with curvature filter and improved Gaussian mixture model[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(7): 1593-1608. |
[3] | LUO Q W, FANG X X, SUN Y C, et al. Surface defect classification for hot-rolled steel strips by selectively dominant local binary patterns[J]. IEEE Access, 2019, 7: 23488-23499. |
[4] | MA J X, WANG Y X, SHI C, et al. Fast surface defect detection using improved Gabor filters[C]// The 25th IEEE International Conference on Image Processing. New York: IEEE Press, 2018: 1508-1512. |
[5] | LIU W H, YANG X Q, YANG X B, et al. A novel industrial chip parameters identification method based on cascaded region segmentation for surface-mount equipment[J]. IEEE Transactions on Industrial Electronics, 2022, 69(5): 5247-5256. |
[6] | HE Y, SONG K C, DONG H W, et al. Semi-supervised defect classification of steel surface based on multi-training and generative adversarial network[J]. Optics and Lasers in Engineering, 2019, 122: 294-302. |
[7] | MASCI J, MEIER U, FRICOUT G, et al. Multi-scale pyramidal pooling network for generic steel defect classification[C]// 2013 International Joint Conference on Neural Networks. New York: IEEE Press, 2013: 1-8. |
[8] | ZHAO Y D, HAO K R, HE H B, et al. A visual long-short-term memory based integrated CNN model for fabric defect image classification[J]. Neurocomputing, 2020, 380: 259-270. |
[9] |
张相胜, 杨骁. 基于改进YOLOv7-tiny的橡胶密封圈缺陷检测方法[J]. 图学学报, 2024, 45(3): 446-453.
DOI |
ZHANG X S, YANG X. Defect detection method of rubber seal ring based on improved YOLOv7-tiny[J]. Journal of Graphics, 2024, 45(3): 446-453 (in Chinese).
DOI |
|
[10] | BLOCK S B, DA SILVA R D, DORINI L B, et al. Inspection of imprint defects in stamped metal surfaces using deep learning and tracking[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 4498-4507. |
[11] | HE Y, SONG K C, MENG Q G, et al. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4): 1493-1504. |
[12] | 王素琴, 任琪, 石敏, 等. 基于异常检测的产品表面缺陷检测与分割[J]. 图学学报, 2022, 43(3): 377-386. |
WANG S Q, REN Q, SHI M, et al. Product surface defect detection and segmentation based on anomaly detection[J]. Journal of Graphics, 2022, 43(3): 377-386 (in Chinese).
DOI |
|
[13] | DONG H W, SONG K C, HE Y, et al. PGA-Net: pyramid feature fusion and global context attention network for automated surface defect detection[J]. IEEE Transactions on Industrial Informatics, 2020, 16(12): 7448-7458. |
[14] | ZHANG J, DING R W, BAN M J, et al. FDSNeT: an accurate real-time surface defect segmentation network[C]// 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. New York: IEEE Press, 2022: 3803-3807. |
[15] | ZHANG T P, WEI X M, WU X M, et al. DBRNet: dual-branch real-time segmentation network for metal defect detection[C]// The 6th Chinese Conference on Pattern Recognition and Computer Vision. Cham: Springer, 2023: 422-434. |
[16] | LIU T H, HE Z S. TAS2-Net: Triple-attention semantic segmentation network for small surface defect detection[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 5004512. |
[17] | CHEN X D, FU C, TIE M, et al. AFFNet: an attention-based feature-fused network for surface defect segmentation[J]. Applied Sciences, 2023, 13(11): 6428. |
[18] | HOWARD A, SANDLER M, CHU G, et al. Searching for MobileNetV3[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 1314-1324. |
[19] | MILLETARI F, NAVAB N, AHMADI S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]// The 4th International Conference on 3D Vision. New York: IEEE Press, 2016: 565-571. |
[20] | HUANG Y B, QIU C Y, YUAN K. Surface defect saliency of magnetic tile[J]. The Visual Computer, 2020, 36(1): 85-96. |
[21] | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. |
[22] | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2015: 3431-3440. |
[23] | CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// The 15th European Conference on Computer Vision. Cham: Springer, 2018: 801-818. |
[24] | ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 2881-2890. |
[25] | ZHAO H S, QI X J, SHEN X Y, et al. ICNet for real-time semantic segmentation on high-resolution images[C]// The 15th European Conference on Computer Vision. Cham: Springer, 2018: 405-420. |
[26] | YU C Q, WANG J B, PENG C, et al. BiSeNet: bilateral segmentation network for real-time semantic segmentation[C]// The 15th European Conference on Computer Vision. Cham: Springer, 2018: 325-341. |
[27] | YU C Q, GAO C X, WANG J B, et al. BiSeNet V2: bilateral network with guided aggregation for real-time semantic segmentation[J]. International Journal of Computer Vision, 2021, 129(11): 3051-3068. |
[28] | FAN M Y, LAI S Q, HUANG J S, et al. Rethinking BiSeNet for real-time semantic segmentation[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 9716-9725. |
[29] | PASZKE A, CHAURASIA A, KIM S, et al. ENet: a deep neural network architecture for real-time semantic segmentation[EB/OL]. [2024-06-22]http://arxiv.org/abs/1606.02147. |
[30] | HONG Y D, PAN H H, SUN W C, et al. Deep dual-resolution networks for real-time and accurate semantic segmentation of road scenes[EB/OL]. [2024-06-22]https://arxiv.org/abs/2101.06085. |
[31] | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 618-626. |
[32] | MA X, DAI X Y, BAI Y, et al. Rewrite the stars[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2024: 5694-5703. |
[33] | TANG Y H, HAN K, GUO J Y, et al. GhostNetv2:enhance cheap operation with long-range attention[EB/OL]. [2024-06-22]https://arxiv.org/abs/2211.12905. |
[34] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 770-778. |
[1] | 牛杭, 葛鑫雨, 赵晓瑜, 杨珂, 王乾铭, 翟永杰. 基于改进YOLOv8的防振锤缺陷目标检测算法[J]. 图学学报, 2025, 46(3): 532-541. |
[2] | 于冰, 程广, 黄东晋, 丁友东. 基于双流网络融合的三维人体网格重建[J]. 图学学报, 2025, 46(3): 625-634. |
[3] | 雷玉林, 刘利刚. 基于深度强化学习的可缓冲的物体运输和装箱[J]. 图学学报, 2025, 46(3): 697-708. |
[4] | 张立立, 杨康, 张珂, 魏薇, 李晶, 谭洪鑫, 张翔宇. 面向柴油车辆排放黑烟的改进型YOLOv8检测算法研究[J]. 图学学报, 2025, 46(2): 249-258. |
[5] | 李治寰, 宁小娟, 吕志勇, 石争浩, 金海燕, 王映辉, 周文明. DEMF-Net:基于双分支增强和多尺度融合的大规模点云语义分割[J]. 图学学报, 2025, 46(2): 259-269. |
[6] | 郭业才, 胡晓伟, 毛湘南. 多尺度密集交互注意力残差真实图像去噪网络[J]. 图学学报, 2025, 46(2): 279-287. |
[7] | 刘高屹, 胡瑞珍, 刘利刚. 基于2D特征蒸馏的3D高斯泼溅语义分割与编辑[J]. 图学学报, 2025, 46(2): 312-321. |
[8] | 崔克彬, 耿佳昌. 基于EE-YOLOv8s的多场景火灾迹象检测算法[J]. 图学学报, 2025, 46(1): 13-27. |
[9] | 吴亦奇, 何嘉乐, 张甜甜, 张德军, 李艳丽, 陈壹林. 基于多重特征提取和点对应关系的三维点云非刚配准[J]. 图学学报, 2025, 46(1): 150-158. |
[10] | 陈冠豪, 徐丹, 贺康建, 施洪贞, 张浩. 基于转置注意力和CNN的图像超分辨率重建网络[J]. 图学学报, 2025, 46(1): 35-46. |
[11] | 张文祥, 王夏黎, 王欣仪, 杨宗宝. 一种强化伪造区域关注的深度伪造人脸检测方法[J]. 图学学报, 2025, 46(1): 47-58. |
[12] | 苑朝, 赵明雪, 张丰羿, 冯晓勇, 李冰, 陈瑞. 基于点云特征增强的复杂室内场景3D目标检测[J]. 图学学报, 2025, 46(1): 59-69. |
[13] | 卢洋, 陈林慧, 姜晓恒, 徐明亮. SDENet:基于多尺度注意力质量感知的合成缺陷数据评价网络[J]. 图学学报, 2025, 46(1): 94-103. |
[14] | 胡凤阔, 叶兰, 谭显峰, 张钦展, 胡志新, 方清, 王磊, 满孝锋. 一种基于改进YOLOv8的轻量化路面病害检测算法[J]. 图学学报, 2024, 45(5): 892-900. |
[15] | 刘义艳, 郝婷楠, 贺晨, 常英杰. 基于DBBR-YOLO的光伏电池表面缺陷检测[J]. 图学学报, 2024, 45(5): 913-921. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||