欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (3): 578-587.DOI: 10.11996/JG.j.2095-302X.2025030578

• 图像处理与计算机视觉 • 上一篇    下一篇

基于边界和语义感知的表面缺陷分割网络

崔丽莎1(), 宋志文1, 姜晓恒1, 马鑫1, 陈恩庆2, 徐明亮1()   

  1. 1.郑州大学计算机与人工智能学院,河南 郑州 450001
    2.郑州大学电气与信息工程学院,河南 郑州 450001
  • 收稿日期:2024-08-22 接受日期:2025-01-12 出版日期:2025-06-30 发布日期:2025-06-13
  • 通讯作者:徐明亮(1981-),男,教授,博士。主要研究方向为大数据与人工智能等。E-mail:iexumingliang@zzu.edu.cn
  • 第一作者:崔丽莎(1988-),女,副教授,博士。主要研究方向为人工智能、目标检测和工业质检。E-mail:ielscui@zzu.edu.cn
  • 基金资助:
    国家自然科学基金(62106232);国家自然科学基金(62172371);国家自然科学基金(62036010);国家自然科学基金(U21B2037);中国博士后科学基金(2021TQ0301)

An edge and sematic-aware segmentation network for defect detection

CUI Lisha1(), SONG Zhiwen1, JIANG Xiaoheng1, MA Xin1, CHEN Enqing2, XU Mingliang1()   

  1. 1. School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou Henan 450001, China
    2. School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou Henan 450001, China
  • Received:2024-08-22 Accepted:2025-01-12 Published:2025-06-30 Online:2025-06-13
  • Contact: XU Mingliang (1981-), professor, Ph.D. His main research interests cover big data and artificial intelligence, etc. E-mail:iexumingliang@zzu.edu.cn
  • First author:CUI Lisha (1988-), associate professor, Ph.D. Her main research interests cover artificial intelligence, object detection, and industrial quality inspection. E-mail:ielscui@zzu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(62106232);National Natural Science Foundation of China(62172371);National Natural Science Foundation of China(62036010);National Natural Science Foundation of China(U21B2037);China Postdoctoral Science Foundation(2021TQ0301)

摘要:

针对部分缺陷特征微弱、边界模糊以及尺度变化大等问题,提出了一种基于边界和语义感知的表面缺陷分割方法ESNet。首先采用双分支网络分别学习图像的语义信息和细节信息,为有效利用2个分支的全面互补信息,提出了双边注意力指导模块(BAGM),通过语义分支的通道注意力指导细节分支学习上下文信息,而细节分支的空间注意力则指导语义分支捕捉底层细节信息。在语义分支中,设计了多尺度金字塔池化模块(MPPM),充分学习和编码多层次上下文信息。同时,在细节分支中,进一步引入了边界感知模块(EAM),通过底层预测的边界图指导高层特征图学习并增强边界信息。最后,为了有效融合细节特征和语义特征,提出了语义感知模块(SAM),缓解跨尺度特征融合的语义信息不对齐问题。在公开缺陷分割数据集NEU-Seg,MT-Defect和MSD上进行了大量实验,实验结果验证了该方法的有效性。

关键词: 表面缺陷, 语义分割, 边界信息, 语义信息, 注意力

Abstract:

To address challenges such as weak defect features, blurred boundaries, and significant scale variations, an edge and semantic-aware segmentation network for defect detection (ESNet) was proposed. Specifically, a dual-branch network was employed to learn semantic and detailed information of the image separately. To effectively utilize the complementary information from both branches, a bilateral attention guidance module (BAGM) was proposed. This module guided the detailed branch to learn contextual information via the channel attention of the semantic branch, while the spatial attention of the detailed branch guided the semantic branch to capture low-level detailed information. In the semantic branch, a multi-scale pyramid pooling module (MPPM) was designed to thoroughly learn and encode multi-level contextual information. Simultaneously, in the detailed branch, an edge-aware module (EAM) was incorporated, which used the boundary map predicted by the lower layers to guide the higher-level feature maps in learning boundary information. Finally, to effectively fuse high-level and low-level feature maps, a semantic-aware module (SAM) was proposed to alleviate the semantic misalignment problem in cross-scale feature fusion. Extensive experiments on public defect segmentation datasets NEU-Seg, MT-Defect, and MSD demonstrated the effectiveness of the proposed method.

Key words: surface defect, semantic segmentation, edge information, semantic information, attention

中图分类号: