图学学报 ›› 2025, Vol. 46 ›› Issue (1): 114-125.DOI: 10.11996/JG.j.2095-302X.2025010114
程旭东1,2(), 史彩娟1,2(
), 高炜翔1,2, 王森1,2, 段昌钰1,2, 闫晓东1,2
收稿日期:
2024-07-01
接受日期:
2024-10-19
出版日期:
2025-02-28
发布日期:
2025-02-14
通讯作者:
史彩娟(1977-),女,教授,博士。主要研究方向为计算机视觉、图像处理和深度学习。E-mail:scj-blue@163.com第一作者:
程旭东(1999-),男,硕士研究生。主要研究方向为迁移学习和目标检测。E-mail:chengxd99@163.com
基金资助:
CHENG Xudong1,2(), SHI Caijuan1,2(
), GAO Weixiang1,2, WANG Sen1,2, DUAN Changyu1,2, YAN Xiaodong1,2
Received:
2024-07-01
Accepted:
2024-10-19
Published:
2025-02-28
Online:
2025-02-14
Contact:
SHI Caijuan (1977-), professor, Ph.D. Her main research interests cover computer vision, image processing and deep learning. E-mail:scj-blue@163.comFirst author:
CHENG Xudong (1999-), master student. His main research interests cover transfer learning and object detection. E-mail:chengxd99@163.com
Supported by:
摘要:
作为一种重要手段,自训练方法极大提升了域自适应目标检测(DAOD)性能,其主要通过教师网络对目标域数据进行预测,然后选择高置信度的预测结果作为伪标签来指导学生网络训练。然而,由于源域与目标域存在显著的域差异,教师网络产生的伪标签质量不佳,进而影响学生网络训练,降低了模型性能。因此,提出一种面向DAOD的一致无偏教师(CUT)模型。首先,在教师网络设计自适应阈值生成(ATG)模块,该模块通过高斯混合模型(GMM)在训练过程为每张图像生成自适应阈值筛选伪标签,保证伪标签数量时序一致性,提高伪标签质量。其次,提出预测引导样本选择(PSS)策略,借助教师网络中区域建议网络的预测结果为学生网络选择样本,使选择的样本与真实结果具有一致性,降低质量不佳伪标签对学生网络的影响。此外,为了提升对小目标和数量较少困难类别目标的检测性能,设计混合域增强(MDA)模块,在训练过程中生成包含源域和类目标域随机信息的混合域图像对学生网络进行训练。将该模型在3个场景数据集进行实验,性能分别提升4.0%,5.8%和3.7%,验证了该算法的有效性。值得注意的是,该模型CUT首次利用自训练方法来解决可见光图像到红外图像的较大域差异问题。
中图分类号:
程旭东, 史彩娟, 高炜翔, 王森, 段昌钰, 闫晓东. 面向域自适应目标检测的一致无偏教师模型[J]. 图学学报, 2025, 46(1): 114-125.
CHENG Xudong, SHI Caijuan, GAO Weixiang, WANG Sen, DUAN Changyu, YAN Xiaodong. Consistent and unbiased teacher model research for domain adaptive object detection[J]. Journal of Graphics, 2025, 46(1): 114-125.
图8 CycleGAN风格迁移数据集((a)正常天气图像到复杂天气图像;(b)可见图像到红外图像;(c)合成图像到真实图像)
Fig. 8 CycleGAN image-to-image translation datasets ((a) Normal weather images to complex weather images; (b) Visual images to infrared images; (c) Synthesize images to real images)
模型 | 模型来源 | Person | Rider | Car | Truck | Bus | Train | Mcycle | Bicycle | mAP |
---|---|---|---|---|---|---|---|---|---|---|
EPM[ | ECCV'20 | 41.9 | 38.7 | 56.7 | 22.6 | 41.5 | 26.8 | 24.6 | 35.5 | 36.0 |
HTCN[ | CVPR'20 | 33.2 | 47.5 | 47.9 | 31.6 | 47.4 | 40.9 | 32.3 | 37.1 | 39.8 |
MeGA-CDA[ | CVPR'21 | 37.7 | 49.0 | 52.4 | 25.4 | 49.2 | 46.9 | 34.5 | 39.0 | 41.8 |
TIA[ | CVPR'22 | 34.8 | 46.3 | 49.7 | 31.1 | 52.1 | 48.6 | 37.7 | 38.1 | 42.3 |
SCAN[ | AAAI'22 | 41.7 | 43.9 | 57.3 | 28.7 | 48.6 | 48.7 | 31.0 | 37.3 | 42.1 |
SIGMA[ | CVPR'22 | 44.0 | 43.9 | 60.3 | 31.6 | 50.4 | 51.5 | 31.7 | 40.6 | 44.2 |
PT[ | ICML'22 | 40.2 | 48.8 | 59.7 | 30.7 | 51.8 | 30.6 | 35.4 | 44.5 | 42.7 |
LRA[ | TNNLS'23 | 45.6 | 47.1 | 59.7 | 32.1 | 52.4 | 44.6 | 34.8 | 39.9 | 44.5 |
DA-Detect[ | WACV'23 | 36.5 | 46.7 | 54.3 | 30.3 | 51.2 | 48.7 | 31.6 | 39.1 | 42.3 |
PT+CMT[ | CVPR'23 | 42.3 | 51.7 | 64.0 | 26.0 | 42.7 | 37.1 | 42.5 | 44.0 | 43.8 |
CIGAR[ | CVPR'23 | 45.3 | 45.3 | 61.6 | 32.1 | 50.0 | 51.0 | 31.9 | 40.4 | 44.7 |
MCNet[ | PR'24 | 48.0 | 50.4 | 62.4 | 26.5 | 46.3 | 34.3 | 37.1 | 43.1 | 43.5 |
DSCA[ | PR'24 | 40.5 | 44.3 | 60.2 | 29.3 | 50.1 | 49.5 | 30.6 | 37.6 | 42.7 |
CRADA[ | TMM'24 | 47.0 | 48.3 | 64.1 | 28.7 | 52.3 | 38.6 | 35.1 | 41.5 | 44.5 |
UGA[ | TOMM'24 | 39.5 | 51.1 | 57.5 | 35.0 | 51.4 | 44.2 | 37.3 | 43.6 | 45.0 |
Baseline[ | CVPR'21 | 33.0 | 46.7 | 48.6 | 34.1 | 56.5 | 46.8 | 30.4 | 37.3 | 41.7 |
CUT(本文) | - | 41.1 | 52.0 | 57.3 | 33.6 | 52.2 | 45.7 | 39.4 | 44.0 | 45.7 |
表1 Cityscapes到Foggy cityscapes实验结果/%
Table 1 Experimental results from Cityscapes to Foggy cityscapes/%
模型 | 模型来源 | Person | Rider | Car | Truck | Bus | Train | Mcycle | Bicycle | mAP |
---|---|---|---|---|---|---|---|---|---|---|
EPM[ | ECCV'20 | 41.9 | 38.7 | 56.7 | 22.6 | 41.5 | 26.8 | 24.6 | 35.5 | 36.0 |
HTCN[ | CVPR'20 | 33.2 | 47.5 | 47.9 | 31.6 | 47.4 | 40.9 | 32.3 | 37.1 | 39.8 |
MeGA-CDA[ | CVPR'21 | 37.7 | 49.0 | 52.4 | 25.4 | 49.2 | 46.9 | 34.5 | 39.0 | 41.8 |
TIA[ | CVPR'22 | 34.8 | 46.3 | 49.7 | 31.1 | 52.1 | 48.6 | 37.7 | 38.1 | 42.3 |
SCAN[ | AAAI'22 | 41.7 | 43.9 | 57.3 | 28.7 | 48.6 | 48.7 | 31.0 | 37.3 | 42.1 |
SIGMA[ | CVPR'22 | 44.0 | 43.9 | 60.3 | 31.6 | 50.4 | 51.5 | 31.7 | 40.6 | 44.2 |
PT[ | ICML'22 | 40.2 | 48.8 | 59.7 | 30.7 | 51.8 | 30.6 | 35.4 | 44.5 | 42.7 |
LRA[ | TNNLS'23 | 45.6 | 47.1 | 59.7 | 32.1 | 52.4 | 44.6 | 34.8 | 39.9 | 44.5 |
DA-Detect[ | WACV'23 | 36.5 | 46.7 | 54.3 | 30.3 | 51.2 | 48.7 | 31.6 | 39.1 | 42.3 |
PT+CMT[ | CVPR'23 | 42.3 | 51.7 | 64.0 | 26.0 | 42.7 | 37.1 | 42.5 | 44.0 | 43.8 |
CIGAR[ | CVPR'23 | 45.3 | 45.3 | 61.6 | 32.1 | 50.0 | 51.0 | 31.9 | 40.4 | 44.7 |
MCNet[ | PR'24 | 48.0 | 50.4 | 62.4 | 26.5 | 46.3 | 34.3 | 37.1 | 43.1 | 43.5 |
DSCA[ | PR'24 | 40.5 | 44.3 | 60.2 | 29.3 | 50.1 | 49.5 | 30.6 | 37.6 | 42.7 |
CRADA[ | TMM'24 | 47.0 | 48.3 | 64.1 | 28.7 | 52.3 | 38.6 | 35.1 | 41.5 | 44.5 |
UGA[ | TOMM'24 | 39.5 | 51.1 | 57.5 | 35.0 | 51.4 | 44.2 | 37.3 | 43.6 | 45.0 |
Baseline[ | CVPR'21 | 33.0 | 46.7 | 48.6 | 34.1 | 56.5 | 46.8 | 30.4 | 37.3 | 41.7 |
CUT(本文) | - | 41.1 | 52.0 | 57.3 | 33.6 | 52.2 | 45.7 | 39.4 | 44.0 | 45.7 |
模型 | 模型来源 | Car | Bicycle | Person | mAP |
---|---|---|---|---|---|
SWDA[ | CVPR'19 | 58.9 | 32.0 | 32.3 | 41.4 |
CR-DA-DET[ | CVPR'20 | 58.3 | 37.6 | 46.3 | 47.4 |
HTCN[ | CVPR'20 | 56.3 | 37.9 | 33.1 | 42.4 |
EPM[ | ECCV'20 | 53.8 | 39.0 | 41.0 | 44.6 |
VDD[ | ICCV'21 | 66.6 | 49.2 | 45.8 | 53.9 |
TIA[ | CVPR'22 | 67.8 | 44.8 | 48.8 | 53.8 |
UDAT[ | TVC'23 | 66.8 | 49.3 | 43.4 | 53.2 |
UGA[ | TOMM'24 | 68.5 | 48.0 | 51.6 | 56.0 |
Baseline[ | CVPR'21 | 65.3 | 43.5 | 49.5 | 52.8 |
CUT(本文) | - | 68.3 | 52.7 | 54.9 | 58.6 |
表2 RGB FLIR到Thermal FLIR实验结果/%
Table 2 Experimental results from RGB FLIR to Thermal FLIR/%
模型 | 模型来源 | Car | Bicycle | Person | mAP |
---|---|---|---|---|---|
SWDA[ | CVPR'19 | 58.9 | 32.0 | 32.3 | 41.4 |
CR-DA-DET[ | CVPR'20 | 58.3 | 37.6 | 46.3 | 47.4 |
HTCN[ | CVPR'20 | 56.3 | 37.9 | 33.1 | 42.4 |
EPM[ | ECCV'20 | 53.8 | 39.0 | 41.0 | 44.6 |
VDD[ | ICCV'21 | 66.6 | 49.2 | 45.8 | 53.9 |
TIA[ | CVPR'22 | 67.8 | 44.8 | 48.8 | 53.8 |
UDAT[ | TVC'23 | 66.8 | 49.3 | 43.4 | 53.2 |
UGA[ | TOMM'24 | 68.5 | 48.0 | 51.6 | 56.0 |
Baseline[ | CVPR'21 | 65.3 | 43.5 | 49.5 | 52.8 |
CUT(本文) | - | 68.3 | 52.7 | 54.9 | 58.6 |
模型 | 模型来源 | AP on Car/% |
---|---|---|
SCDA[ | CVPR'19 | 43.0 |
EPM[ | ECCV'20 | 43.2 |
HTCN[ | CVPR'20 | 42.5 |
SED[ | AAAI'21 | 42.5 |
MeGA-CDA[ | CVPR'21 | 44.8 |
SCAN[ | AAAI'22 | 45.8 |
SIGMA[ | CVPR'22 | 45.8 |
Baseline[ | CVPR'21 | 43.1 |
CUT(本文) | - | 46.8 |
表3 SIM10K到Cityscapes实验结果
Table 3 Experimental results from SIM10K to Cityscapes
模型 | 模型来源 | AP on Car/% |
---|---|---|
SCDA[ | CVPR'19 | 43.0 |
EPM[ | ECCV'20 | 43.2 |
HTCN[ | CVPR'20 | 42.5 |
SED[ | AAAI'21 | 42.5 |
MeGA-CDA[ | CVPR'21 | 44.8 |
SCAN[ | AAAI'22 | 45.8 |
SIGMA[ | CVPR'22 | 45.8 |
Baseline[ | CVPR'21 | 43.1 |
CUT(本文) | - | 46.8 |
模型 | ATG | PSS | MDA | mAP(C→F) | mAP(R→T) | AP on car(S→C) |
---|---|---|---|---|---|---|
Baseline | - | - | - | 41.7 | 52.8 | 43.1 |
#1 | √ | - | - | 43.1 | 54.3 | 44.7 |
#2 | - | √ | - | 43.8 | 53.3 | 44.5 |
#3 | - | - | √ | 44.2 | 55.0 | 44.6 |
#4 | √ | √ | - | 44.0 | 54.4 | 45.6 |
#5 | √ | - | √ | 45.4 | 57.0 | 46.1 |
#6 | - | √ | √ | 45.0 | 55.4 | 45.7 |
CUT(本文) | √ | √ | √ | 45.7 | 58.6 | 46.8 |
表4 消融研究/%
Table 4 Ablation study/%
模型 | ATG | PSS | MDA | mAP(C→F) | mAP(R→T) | AP on car(S→C) |
---|---|---|---|---|---|---|
Baseline | - | - | - | 41.7 | 52.8 | 43.1 |
#1 | √ | - | - | 43.1 | 54.3 | 44.7 |
#2 | - | √ | - | 43.8 | 53.3 | 44.5 |
#3 | - | - | √ | 44.2 | 55.0 | 44.6 |
#4 | √ | √ | - | 44.0 | 54.4 | 45.6 |
#5 | √ | - | √ | 45.4 | 57.0 | 46.1 |
#6 | - | √ | √ | 45.0 | 55.4 | 45.7 |
CUT(本文) | √ | √ | √ | 45.7 | 58.6 | 46.8 |
质量q | α | ||||
---|---|---|---|---|---|
0 | 0.2 | 0.5 | 0.8 | 1.0 | |
mAP/% | 41.7 | 43.8 | 43.2 | 42.9 | 41.2 |
表5 超参数α分析
Table 5 Analysis of hyperparameter α
质量q | α | ||||
---|---|---|---|---|---|
0 | 0.2 | 0.5 | 0.8 | 1.0 | |
mAP/% | 41.7 | 43.8 | 43.2 | 42.9 | 41.2 |
[1] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[2] | TIAN Z, SHEN C H, CHEN H, et al. FCOS: a simple and strong anchor-free object detector[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1922-1933. |
[3] | CHEN Y H, LI W, SAKARIDIS C, et al. Domain adaptive faster R-CNN for object detection in the wild[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 3339-3348. |
[4] | CAI Q, PAN Y W, NGO C W, et al. Exploring object relation in mean teacher for cross-domain detection[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 11449-11458. |
[5] | SONG G L, LIU Y, WANG X G. Revisiting the sibling head in object detector[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 11560-11569. |
[6] | WANG X J, YANG X Y, ZHANG S L, et al. Consistent-teacher: towards reducing inconsistent pseudo-targets in semi- supervised object detection[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 3240-3249. |
[7] | KENNERLEY M, WANG J G, VEERAVALLI B, et al. CAT: exploiting inter-class dynamics for domain adaptive object detection[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2024: 16541-16550. |
[8] |
王兵, 徐裴, 张兴鹏. 傅里叶增强的无偏跨域目标检测研究[J]. 计算机科学与探索, 2024, 18(9): 2436-2448.
DOI |
WANG B, XU P, ZAHNG X P. Research on Fourier augmented unbiased cross-domain object detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(9): 2436-2448 (in Chinese). | |
[9] |
李晶晶, 孟利超, 张可, 等. 领域自适应研究综述[J]. 计算机工程, 2021, 47(6): 1-13.
DOI |
LI J J, MENG L C, ZHANG K, et al. Review of studies on domain adaptation[J]. Computer Engineering, 2021, 47(6): 1-13 (in Chinese).
DOI |
|
[10] | 彭国琴, 张浩, 徐丹. 基于域自适应的云南重彩画无监督情感识别[J]. 图学学报, 2022, 43(4): 641-650. |
PENG G Q, ZHANG H, XU D. Unsupervised emotion recognition of Yunnan Heavy Color Paintings based on domain adaptation[J]. Journal of Graphics, 2022, 43(4): 641-650 (in Chinese). | |
[11] | YU Y, ZHAI Y C, ZHANG Y. Align and Adapt: a two-stage adaptation framework for unsupervised domain adaptation[C]// The 30th ACM International Conference on Multimedia. New York: ACM, 2022: 4723-4732. |
[12] |
张桂梅, 陶辉, 鲁飞飞, 等. 基于双源判别器的域自适应城市场景语义分割[J]. 图学学报, 2023, 44(5): 907-917.
DOI |
ZHANG G M, TAO H, LU F F, et al. Domain adaptive urban scene semantic segmentation based on dual-source discriminator[J]. Journal of Graphics, 2023, 44(5): 907-917 (in Chinese). | |
[13] | ZHAO L, WANG L M. Task-specific inconsistency alignment for domain adaptive object detection[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 14197-14206. |
[14] | SAITO K, USHIKU Y, HARADA T, et al. Strong-weak distribution alignment for adaptive object detection[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 6949-6958. |
[15] | ZHU X G, PANG J M, YANG C Y, et al. Adapting object detectors via selective cross-domain alignment[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 687-696. |
[16] | HSU C C, TSAI Y H, LIN Y Y, et al. Every pixel matters: center-aware feature alignment for domain adaptive object detector[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 733-748. |
[17] | WANG H A, JIA S L, ZENG T Y, et al. Triple feature disentanglement for one-stage adaptive object detection[C]// The 38th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2024: 5401-5409. |
[18] | FU H L, LIU H H, YUAN J, et al. YOLO-Adaptor: a fast adaptive one-stage detector for non-aligned visible-infrared Object Detection[EB/OL]. (2024-04-25) [2024-05-29]. https://ieeexplore.ieee.org/abstract/document/10508329. |
[19] | SHI C J, ZHENG Y F, CHEN Z. Domain adaptive thermal object detection with unbiased granularity alignment[J]. ACM Transactions on Multimedia Computing, Communications and Applications, 2024, 20(9): 274. |
[20] | LI W Y, LIU X Y, YUAN Y X. SIGMA: semantic-complete graph matching for domain adaptive object detection[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 5281-5290. |
[21] | TARVAINEN A, VALPOLA H. Mean teachers are better role models: weight-averaged consistency targets improve semi- supervised deep learning results[C]// The 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 1195-1204. |
[22] | DENG J H, LI W, CHEN Y H, et al. Unbiased mean teacher for cross-domain object detection[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 4089-4099. |
[23] | LI Y J, DAI X L, MA C Y, et al. Cross-domain adaptive teacher for object detection[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 7571-7580. |
[24] | CHEN M L, CHEN W J, YANG S C, et al. Learning domain adaptive object detection with probabilistic teacher[EB/OL]. [2024-05-01]. https://proceedings.mlr.press/v162/chen22b.html. |
[25] | DENG J H, XU D L, LI W, et al. Harmonious teacher for cross-domain object detection[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 23829-23838. |
[26] | CAO S C, JOSHI D, GUI L Y, et al. Contrastive mean teacher for domain adaptive object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 23839-23848. |
[27] | GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. [2024-05-29]. https://xueshu.baidu.com/usercenter/paper/show?paperid=195c06c0472x0xe01m0006h0j7739694. |
[28] | CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 3213-3223. |
[29] | SAKARIDIS C, DAI D X, VAN GOOL L. Semantic foggy scene understanding with synthetic data[J]. International Journal of Computer Vision, 2018, 126(9): 973-992. |
[30] | MARNISSI M A, FRADI H, SAHBANI A, et al. Feature distribution alignments for object detection in the thermal domain[J]. The Visual Computer, 2023, 39(3): 1081-1093. |
[31] | JOHNSON-ROBERSON M, BARTO C, MEHTA R, et al. Driving in the matrix: can virtual worlds replace human-generated annotations for real world tasks?[C]// 2017 IEEE International Conference on Robotics and Automation. New York: IEEE Press, 2017: 746-753. |
[32] | CHEN C Q, ZHENG Z B, DING X H, et al. Harmonizing transferability and discriminability for adapting object detectors[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 8866-8875. |
[33] | VS V, GUPTA V, OZA P, et al. MeGA-CDA: memory guided attention for category-aware unsupervised domain adaptive object detection[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 4514-4524. |
[34] | LI W Y, LIU X Y, YAO X W, et al. SCAN: cross domain object detection with semantic conditioned adaptation[C]// The 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 1421-1428. |
[35] | PIAO Z Q, TANG L B, ZHAO B J. Unsupervised domain-adaptive object detection via localization regression alignment[EB/OL]. (2023-06-19) [2024-05-29]. https://ieeexplore.ieee.org/document/10154573. |
[36] | LI J L, XU R S, MA J, et al. Domain adaptive object detection for autonomous driving under foggy weather[C]// 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. New York: IEEE Press, 2023: 612-622. |
[37] | LIU Y B, WANG J H, HUANG C, et al. CIGAR: cross-modality graph reasoning for domain adaptive object detection[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 23776-23786. |
[38] | PANG J, LIU W F, ZHANG B F, et al. MCNet: magnitude consistency network for domain adaptive object detection under inclement environments[J]. Pattern Recognition, 2024, 145: 109947. |
[39] | GUO Y S, YU H, XIE S R, et al. DSCA: a dual semantic correlation alignment method for domain adaptation object detection[J]. Pattern Recognition, 2024, 150: 110329. |
[40] | LIU Y B, WANG J H, WANG W J, et al. CRADA: cross domain object detection with cyclic reconstruction and decoupling adaptation[J]. IEEE Transactions on Multimedia, 2024, 26: 6250-6261. |
[41] | XU C D, ZHAO X R, JIN X, et al. Exploring categorical regularization for domain adaptive object detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 11721-11730. |
[42] | WU A M, LIU R, HAN Y H, et al. Vector-decomposed disentanglement for domain-invariant object detection[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 9322-9331. |
[43] | LI X F, CHEN W J, XIE D, et al. A free lunch for unsupervised domain adaptive object detection without source data[C]// The 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 8474-8481. |
[1] | 崔克彬, 耿佳昌. 基于EE-YOLOv8s的多场景火灾迹象检测算法[J]. 图学学报, 2025, 46(1): 13-27. |
[2] | 张文祥, 王夏黎, 王欣仪, 杨宗宝. 一种强化伪造区域关注的深度伪造人脸检测方法[J]. 图学学报, 2025, 46(1): 47-58. |
[3] | 苑朝, 赵明雪, 张丰羿, 冯晓勇, 李冰, 陈瑞. 基于点云特征增强的复杂室内场景3D目标检测[J]. 图学学报, 2025, 46(1): 59-69. |
[4] | 王杨, 马唱, 胡明, 孙涛, 饶元, 袁振羽. 基于多尺度特征融合的轻量型野外蝙蝠检测[J]. 图学学报, 2025, 46(1): 70-80. |
[5] | 孙前来, 林绍杭, 刘东峰, 宋晓阳, 刘佳耀, 刘瑞珍. 基于元学习的小样本指针式仪表检测方法[J]. 图学学报, 2025, 46(1): 81-93. |
[6] | 李琼, 考月英, 张莹, 徐沛. 面向无人机航拍图像的目标检测研究综述[J]. 图学学报, 2024, 45(6): 1145-1164. |
[7] | 陈晓皎, 束云峰, 汪睿涵, 周佳欢, 陈为. 大语言模型驱动的UI评估系统[J]. 图学学报, 2024, 45(6): 1178-1187. |
[8] | 李珍峰, 符世琛, 徐乐, 孟博, 张昕, 秦建军. 基于MBI-YOLOv8的煤矸石目标检测算法研究[J]. 图学学报, 2024, 45(6): 1301-1312. |
[9] | 闫建红, 冉同霄. 基于YOLOv8的轻量化无人机图像目标检测算法[J]. 图学学报, 2024, 45(6): 1328-1337. |
[10] | 姜晓恒, 段金忠, 卢洋, 崔丽莎, 徐明亮. 融合先验知识推理的表面缺陷检测[J]. 图学学报, 2024, 45(5): 957-967. |
[11] | 章东平, 魏杨悦, 何数技, 徐云超, 胡海苗, 黄文君. 特征融合与层间传递:一种基于Anchor DETR改进的目标检测方法[J]. 图学学报, 2024, 45(5): 968-978. |
[12] | 李建华, 韩宇, 石开铭, 张可嘉, 郭红领, 方东平, 曹佳明. 施工现场小目标工人检测方法[J]. 图学学报, 2024, 45(5): 1040-1049. |
[13] | 孙己龙, 刘勇, 周黎伟, 路鑫, 侯小龙, 王亚琼, 王志丰. 基于DCNv2和Transformer Decoder的隧道衬砌裂缝高效检测模型研究[J]. 图学学报, 2024, 45(5): 1050-1061. |
[14] | 李大湘, 吉展, 刘颖, 唐垚. 改进YOLOv7遥感图像目标检测算法[J]. 图学学报, 2024, 45(4): 650-658. |
[15] | 胡欣, 常娅姝, 秦皓, 肖剑, 程鸿亮. 基于改进YOLOv8和GMM图像点集匹配的双目测距方法[J]. 图学学报, 2024, 45(4): 714-725. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||