Journal of Graphics ›› 2025, Vol. 46 ›› Issue (2): 279-287.DOI: 10.11996/JG.j.2095-302X.2025020279
• Image Processing and Computer Vision • Previous Articles Next Articles
GUO Yecai1,2(), HU Xiaowei1, AMITAVE Saha1, MAO Xiangnan1
Received:
2024-07-16
Accepted:
2024-12-06
Online:
2025-04-30
Published:
2025-04-24
About author:
First author contact:GUO Yecai (1962-), professor, Ph.D. His main research interests cover machine learning, meteorological communication technology, underwater communication theory and its applications, etc. E-mail:guo-yecai@163.com
Supported by:
CLC Number:
GUO Yecai, HU Xiaowei, AMITAVE Saha, MAO Xiangnan. Multiscale dense interactive attention residual real image denoising network[J]. Journal of Graphics, 2025, 46(2): 279-287.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025020279
名称 | 配置 |
---|---|
Operating system | Windows 10 |
GPU | NVIDIA GeForce GTX 3060 Ti |
CPU | Intel Core i5- 12400K @3.40 GHz |
Deep learning framework | PyTorch 1.7.1+cu 101 |
Python Version | 3.7 |
Table 1 Environment configuration
名称 | 配置 |
---|---|
Operating system | Windows 10 |
GPU | NVIDIA GeForce GTX 3060 Ti |
CPU | Intel Core i5- 12400K @3.40 GHz |
Deep learning framework | PyTorch 1.7.1+cu 101 |
Python Version | 3.7 |
算法 | SIDD | DND | ||
---|---|---|---|---|
PSNR/dB | SSIM/% | PSNR/dB | SSIM/% | |
BM3D | 26.65 | 68.5 | 34.51 | 85.1 |
RIDNet | 38.73 | 95.4 | 39.25 | 95.0 |
AINDNet | 38.96 | 95.2 | 39.37 | 95.1 |
MSGAN | 39.11 | 95.5 | 39.59 | 95.5 |
DCBDNet | 38.94 | 95.3 | 39.37 | 95.1 |
DCANet | 39.27 | 95.6 | 39.57 | 95.3 |
MRIDN | 39.43 | 95.7 | 39.49 | 95.1 |
Ours | 39.62 | 95.8 | 39.80 | 95.4 |
Table 2 Comparison results of different algorithms for denoising on SIDD and DND datasets
算法 | SIDD | DND | ||
---|---|---|---|---|
PSNR/dB | SSIM/% | PSNR/dB | SSIM/% | |
BM3D | 26.65 | 68.5 | 34.51 | 85.1 |
RIDNet | 38.73 | 95.4 | 39.25 | 95.0 |
AINDNet | 38.96 | 95.2 | 39.37 | 95.1 |
MSGAN | 39.11 | 95.5 | 39.59 | 95.5 |
DCBDNet | 38.94 | 95.3 | 39.37 | 95.1 |
DCANet | 39.27 | 95.6 | 39.57 | 95.3 |
MRIDN | 39.43 | 95.7 | 39.49 | 95.1 |
Ours | 39.62 | 95.8 | 39.80 | 95.4 |
Fig. 5 Comparison of denoising effects of different algorithms on the SIDD dataset ((a) Noisy image; (b) BM3D; (c) RIDNet; (d) DCBDNet; (e) DCANAet; (f) MRIDN; (g) Ours; (h) Clean image)
Fig. 6 Comparison of denoising effects of different algorithms on the DND dataset ((a) Noisy image; (b) BM3D; (c) RIDNet; (d) DCBDNet; (e) DCANAet; (f) MSGAN; (g) MRIDN; (h) Ours)
Fig. 7 Comparison of denoising effects of different algorithms on the MIDD dataset ((a) Noisy image; (b) BM3D; (c) RIDNet; (d) DCBDNet; (e) DCANAet; (f) MSGAN; (g) Ours; (h) Clean image)
Fig. 8 Comparison of denoising effects of different algorithms on images taken by cell phones ((a) Noisy image; (b) BM3D; (c) RIDNet; (d) DCBDNet; (e) AINDNet; (f) DCANAet; (g) MSGAN; (h) Ours)
模块 | 类型 | 参数/M | PSNR/dB | SSIM/% |
---|---|---|---|---|
MAFM | 非对称 | 9.67 | 39.62 | 95.8 |
3×3 Conv | 对称 | 9.60 | 39.53 | 95.5 |
Table 3 Convolutional kernel performance comparison
模块 | 类型 | 参数/M | PSNR/dB | SSIM/% |
---|---|---|---|---|
MAFM | 非对称 | 9.67 | 39.62 | 95.8 |
3×3 Conv | 对称 | 9.60 | 39.53 | 95.5 |
变体 | 模块 | PSNR/dB | SSIM/% | |||
---|---|---|---|---|---|---|
MAFM | MSCM | DGAM | Skip connection | |||
MDIARN-a | √ | - | - | - | 35.36 | 91.0 |
MDIARN-b | √ | √ | - | - | 39.45 | 95.4 |
MDIARN-c | √ | - | √ | - | 37.53 | 94.0 |
MDIARN-d | √ | √ | √ | - | 39.54 | 95.7 |
MDIARN-e | √ | √ | - | √ | 39.53 | 95.7 |
Ours | √ | √ | √ | √ | 39.62 | 95.8 |
Table 4 Results of ablation experiments
变体 | 模块 | PSNR/dB | SSIM/% | |||
---|---|---|---|---|---|---|
MAFM | MSCM | DGAM | Skip connection | |||
MDIARN-a | √ | - | - | - | 35.36 | 91.0 |
MDIARN-b | √ | √ | - | - | 39.45 | 95.4 |
MDIARN-c | √ | - | √ | - | 37.53 | 94.0 |
MDIARN-d | √ | √ | √ | - | 39.54 | 95.7 |
MDIARN-e | √ | √ | - | √ | 39.53 | 95.7 |
Ours | √ | √ | √ | √ | 39.62 | 95.8 |
数量 | 参数/M | PSNR/dB | SSIM/% |
---|---|---|---|
1 | 2.68 | 39.25 | 95.5 |
2 | 5.01 | 39.43 | 95.7 |
3 | 7.34 | 39.50 | 95.7 |
4 | 9.67 | 39.62 | 95.8 |
5 | 12.00 | 39.64 | 95.8 |
Table 5 Performance comparison of the number of MSCM
数量 | 参数/M | PSNR/dB | SSIM/% |
---|---|---|---|
1 | 2.68 | 39.25 | 95.5 |
2 | 5.01 | 39.43 | 95.7 |
3 | 7.34 | 39.50 | 95.7 |
4 | 9.67 | 39.62 | 95.8 |
5 | 12.00 | 39.64 | 95.8 |
数量 | 参数/M | PSNR/dB | SSIM/% |
---|---|---|---|
3 | 4.14 | 39.39 | 95.3 |
4 | 6.66 | 39.53 | 95.5 |
5 | 9.67 | 39.62 | 95.8 |
6 | 13.28 | 39.63 | 95.8 |
7 | 17.47 | 39.64 | 95.8 |
Table 6 Performance comparison of the number of convolutions in MDIU
数量 | 参数/M | PSNR/dB | SSIM/% |
---|---|---|---|
3 | 4.14 | 39.39 | 95.3 |
4 | 6.66 | 39.53 | 95.5 |
5 | 9.67 | 39.62 | 95.8 |
6 | 13.28 | 39.63 | 95.8 |
7 | 17.47 | 39.64 | 95.8 |
方法 | 时间/s | 参数/M |
---|---|---|
BM3D | 2.165(CPU) | - |
RIDNet | 0.046(GPU) | 1.50 |
DCBDNet | 0.054(GPU) | 1.10 |
DCANet | 0.059(GPU) | 1.40 |
AINDNet | 0.085(GPU) | 13.76 |
MRIDN | 0.051(GPU) | 6.92 |
Ours | 0.048(GPU) | 9.67 |
Table 7 Runtimes and model parameters for different models on a 256×256 noisy image
方法 | 时间/s | 参数/M |
---|---|---|
BM3D | 2.165(CPU) | - |
RIDNet | 0.046(GPU) | 1.50 |
DCBDNet | 0.054(GPU) | 1.10 |
DCANet | 0.059(GPU) | 1.40 |
AINDNet | 0.085(GPU) | 13.76 |
MRIDN | 0.051(GPU) | 6.92 |
Ours | 0.048(GPU) | 9.67 |
[1] | SOLOMON C, BRECKON T. Fundamentals of digital image processing: a practical approach with examples in MATLAB[M]. Hoboken: Wiley-Blackwell, 2011: 6-7. |
[2] |
AFONSO M V, BIOUCAS-DIAS J M, FIGUEIREDO M A T. Fast image recovery using variable splitting and constrained optimization[J]. IEEE Transactions on Image Processing, 2010, 19(9): 2345-2356.
DOI PMID |
[3] |
DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095.
DOI PMID |
[4] | ANWAR S, BARNES N. Real image denoising with feature attention[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 3155-3164. |
[5] | YAO C, TANG Y B, SUN J, et al. Multiscale residual fusion network for image denoising[J]. IET Image Processing, 2022, 16(3): 878-887. |
[6] | 吴文聪. 基于卷积神经网络的图像去噪方法研究[D]. 昆明: 云南师范大学, 2023. |
WU W C. Research on convolutional neural network for image denoising[D]. Kunming: Yunnan Normal University, 2023 (in Chinese). | |
[7] | YU X J, FU Z X, GE C K. A multi-scale generative adversarial network for real-world image denoising[J]. Signal, Image and Video Processing, 2022, 16(1): 257-264. |
[8] | DING X H, GUO Y C, DING G G, et al. ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 1911-1920. |
[9] | HEIDE F, STEINBERGER M, TSAI Y T, et al. FlexISP: a flexible camera image processing framework[J]. ACM Transactions on Graphics, 2014, 33(6): 231. |
[10] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// The 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19. |
[11] | 满开亮, 汪友生, 刘继荣. 基于稠密残差网络的图像超分辨率重建算法[J]. 图学学报, 2021, 42(4): 556-562. |
MAN K L, WANG Y S, LIU J R. Image super-resolution reconstruction algorithm based on dense residual network[J]. Journal of Graphics, 2021, 42(4): 556-562 (in Chinese). | |
[12] |
CRNJANSKI J, KRSTIĆ M, TOTOVIĆ A, et al. Adaptive sigmoid-like and PReLU activation functions for all-optical perceptron[J]. Optics Letters, 2021, 46(9): 2003-2006.
DOI PMID |
[13] | JIANG D C, QU H, ZHAO J H, et al. Aggregating multi-scale contextual features from multiple stages for semantic image segmentation[J]. Connection Science, 2021, 33(3): 605-622. |
[14] | HE X, CHEN Y S. Modifications of the multi-layer perceptron for hyperspectral image classification[J]. Remote Sensing, 2021, 13(17): 3547. |
[15] |
魏敏, 姚鑫. 基于多尺度与注意力机制的两阶段风暴单体外推研究[J]. 图学学报, 2024, 45(4): 696-704.
DOI |
WEI M, YAO X. Two-stage storm entity prediction based on multiscale and attention[J]. Journal of Graphics, 2024, 45(4): 696-704 (in Chinese).
DOI |
|
[16] | CHARBONNIER P, BLANC-FERAUD L, AUBERT G, et al. Two deterministic half-quadratic regularization algorithms for computed imaging[C]// The 1st International Conference on Image Processing. New York: IEEE Press, 1994: 168-172. |
[17] | JIANG K, WANG Z Y, YI P, et al. Multi-scale progressive fusion network for single image deraining[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 8343-8352. |
[18] | ABDELHAMED A, LIN S, BROWN M S. A high-quality denoising dataset for smartphone cameras[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 1692-1700. |
[19] | PLÖTZ T, ROTH S. Benchmarking denoising algorithms with real photographs[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 2750-2759. |
[20] | FLEPP R, IGNATOV A, TIMOFTE R, et al. Real-world mobile image denoising dataset with efficient baselines[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2024: 22368-22377. |
[21] | 佟雨兵, 张其善, 祁云平. 基于PSNR与SSIM联合的图像质量评价模型[J]. 中国图象图形学报, 2006, 11(12): 1758-1763. |
TONG Y B, ZHANG Q S, QI Y P. Image quality assessing by combining PSNR with SSIM[J]. Journal of Image and Graphics, 2006, 11(12): 1758-1763 (in Chinese). | |
[22] | CAZENAVE T, SENTUC J, VIDEAU M. Cosine annealing, Mixnet and Swish activation for computer go[C]// The 17th International Conference on Advances in Computer Games. Cham: Springer, 2022: 53-60. |
[23] |
常禧龙, 梁琨, 李文涛. 深度学习优化器进展综述[J]. 计算机工程与应用, 2024, 60(7): 1-12.
DOI |
CHANG X L, LIANG K, LI W T. Review of development of deep Learning optimizer[J]. Computer Engineering and Applications, 2024, 60(7): 1-12 (in Chinese).
DOI |
|
[24] | KIM Y, SOH J W, PARK G Y, et al. Transfer learning from synthetic to real-noise denoising with adaptive instance normalization[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 3479-3489. |
[25] |
冯妍舟, 刘建霞, 王海翼, 等. 基于多级残差信息蒸馏的真实图像去噪方法[J]. 计算机工程, 2024, 50(3): 216-223.
DOI |
FENG Y Z, LIU J X, WANG H Y, et al. Real image denoising method based on multi-level residual information distillation[J]. Computer Engineering, 2024, 50(3): 216-223 (in Chinese).
DOI |
[1] | ZHANG Lili, YANG Kang, ZHANG Ke, WEI Wei, LI Jing, TAN Hongxin, ZHANG Xiangyu. Research on improved YOLOv8 detection algorithm for diesel vehicle emission of black smoke [J]. Journal of Graphics, 2025, 46(2): 249-258. |
[2] | PAN Shuyan, LIU Liqun. MSFAFuse: sar and optical image fusion model based on multi-scale feature information and attention mechanism [J]. Journal of Graphics, 2025, 46(2): 300-311. |
[3] | CUI Kebin, GENG Jiachang. A multi-scene fire sign detection algorithm based on EE-YOLOv8s [J]. Journal of Graphics, 2025, 46(1): 13-27. |
[4] | WU Yiqi, HE Jiale, ZHANG Tiantian, ZHANG Dejun, LI Yanli, CHEN Yilin. Unsupervised 3D point cloud non-rigid registration based on multi-feature extraction and point correspondence [J]. Journal of Graphics, 2025, 46(1): 150-158. |
[5] | CHEN Guanhao, XU Dan, HE Kangjian, SHI Hongzhen, ZHANG Hao. TSA-SFNet: transpose self-attention and CNN based stereoscopic fusion network for image super-resolution [J]. Journal of Graphics, 2025, 46(1): 35-46. |
[6] | ZHANG Wenxiang, WANG Xiali, WANG Xinyi, YANG Zongbao. A deepfake face detection method that enhances focus on forgery regions [J]. Journal of Graphics, 2025, 46(1): 47-58. |
[7] | YUAN Chao, ZHAO Mingxue, ZHANG Fengyi, FENG Xiaoyong, LI Bing, CHEN Rui. Point cloud feature enhanced 3D object detection in complex indoor scenes [J]. Journal of Graphics, 2025, 46(1): 59-69. |
[8] | LU Yang, CHEN Linhui, JIANG Xiaoheng, XU Mingliang. SDENet: a synthetic defect data evaluation network based on multi-scale attention quality perception [J]. Journal of Graphics, 2025, 46(1): 94-103. |
[9] | HU Fengkuo, YE Lan, TAN Xianfeng, ZHANG Qinzhan, HU Zhixin, FANG Qing, WANG Lei, MAN Xiaofeng. A refined YOLOv8-based algorithm for lightweight pavement disease detection [J]. Journal of Graphics, 2024, 45(5): 892-900. |
[10] | LIU Yiyan, HAO Tingnan, HE Chen, CHANG Yingjie. Photovoltaic cell surface defect detection based on DBBR-YOLO [J]. Journal of Graphics, 2024, 45(5): 913-921. |
[11] | WU Peichen, YUAN Lining, HU Hao, LIU Zhao, GUO Fang. Video anomaly detection based on attention feature fusion [J]. Journal of Graphics, 2024, 45(5): 922-929. |
[12] | ZHAI Yongjie, LI Jiawei, CHEN Nianhao, WANG Qianming, WANG Xinying. The vehicle parts detection method enhanced with Transformer integration [J]. Journal of Graphics, 2024, 45(5): 930-940. |
[13] | LIU Li, ZHANG Qifan, BAI Yuang, HUANG Kaiye. Research on multi-scale remote sensing image change detection using Swin Transformer [J]. Journal of Graphics, 2024, 45(5): 941-956. |
[14] | ZHANG Dongping, WEI Yangyue, HE Shuji, XU Yunchao, HU Haimiao, HUANG Wenjun. Feature fusion and inter-layer transmission: an improved object detection method based on Anchor DETR [J]. Journal of Graphics, 2024, 45(5): 968-978. |
[15] | XIE Guobo, LIN Songze, LIN Zhiyi, WU Chenfeng, LIANG Lihui. Road defect detection algorithm based on improved YOLOv7-tiny [J]. Journal of Graphics, 2024, 45(5): 987-997. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||