Journal of Graphics ›› 2024, Vol. 45 ›› Issue (6): 1375-1388.DOI: 10.11996/JG.j.2095-302X.2024061375
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
WANG Zongji1,2(), LIU Yunfei2, LU Feng2(
)
Received:
2024-07-04
Accepted:
2024-09-24
Online:
2024-12-31
Published:
2024-12-24
Contact:
LU Feng
About author:
First author contact:WANG Zongji (1991-), assistant researcher, Ph.D. His main research interests cover 3D scene reconstruction and understanding. E-mail:wangzongji@aircas.ac.cn
Supported by:
CLC Number:
WANG Zongji, LIU Yunfei, LU Feng. Cloud Sphere: a 3D shape representation method via progressive deformation[J]. Journal of Graphics, 2024, 45(6): 1375-1388.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024061375
类别 | LOGAN | AtlasNet | CFPDAE (本文方法) | ||||||
---|---|---|---|---|---|---|---|---|---|
CD↓ | EMD↓ | IoU↑ | CD↓ | EMD↓ | IoU↑ | CD↓ | EMD↓ | IoU↑ | |
Air plane A | 0.23 | 1.07 | 0.77 | 0.17 | 0.94 | 0.81 | 0.15 | 0.90 | 0.81 |
Air plane B | 0.82 | 1.93 | 0.61 | 0.64 | 1.67 | 0.62 | 0.40 | 1.43 | 0.69 |
Air plane C | 3.20 | 3.73 | 0.40 | 1.31 | 2.39 | 0.55 | 0.68 | 1.98 | 0.61 |
Air plane D | 1.60 | 3.18 | 0.48 | 0.92 | 2.29 | 0.51 | 0.78 | 2.30 | 0.53 |
平均 | 1.46 | 2.48 | 0.56 | 0.76 | 1.82 | 0.62 | 0.50 | 1.65 | 0.66 |
Car A | 0.62 | 1.83 | 0.56 | 0.70 | 1.57 | 0.66 | 0.40 | 1.53 | 0.67 |
Car B | 0.37 | 1.50 | 0.64 | 0.85 | 1.82 | 0.61 | 0.33 | 1.42 | 0.69 |
Car C | 0.99 | 2.33 | 0.45 | 7.46 | 3.52 | 0.51 | 0.62 | 1.82 | 0.59 |
Car D | 0.76 | 2.04 | 0.54 | 0.76 | 1.91 | 0.55 | 0.47 | 1.69 | 0.63 |
平均 | 0.69 | 1.92 | 0.55 | 2.44 | 2.21 | 0.58 | 0.45 | 1.62 | 0.65 |
Chair A | 1.59 | 3.16 | 0.46 | 0.92 | 2.43 | 0.54 | 0.51 | 1.68 | 0.71 |
Chair B | 5.04 | 5.15 | 0.32 | 2.00 | 3.43 | 0.43 | 1.41 | 2.71 | 0.56 |
Chair C | 4.61 | 5.00 | 0.29 | 2.09 | 3.35 | 0.43 | 1.32 | 2.69 | 0.59 |
Chair D | 4.50 | 5.18 | 0.32 | 1.86 | 2.97 | 0.49 | 1.66 | 2.93 | 0.52 |
平均 | 3.94 | 4.62 | 0.35 | 1.72 | 3.04 | 0.47 | 1.22 | 2.50 | 0.59 |
Table A | 7.41 | 6.34 | 0.25 | 2.11 | 3.38 | 0.41 | 1.64 | 2.90 | 0.50 |
Table B | 5.38 | 5.64 | 0.25 | 2.22 | 3.54 | 0.36 | 1.05 | 2.41 | 0.55 |
Table C | 1.57 | 2.92 | 0.41 | 2.21 | 2.88 | 0.43 | 0.53 | 1.84 | 0.67 |
Table D | 4.44 | 4.96 | 0.32 | 2.56 | 3.56 | 0.40 | 0.89 | 2.17 | 0.62 |
平均 | 4.70 | 4.96 | 0.31 | 2.28 | 3.34 | 0.40 | 1.03 | 2.33 | 0.59 |
Table 1 Comparative analysis of self-reconstruction accuracy metrics (CD: ×1000, EMD: ×100, IoU calculated using voxel resolution of 32)
类别 | LOGAN | AtlasNet | CFPDAE (本文方法) | ||||||
---|---|---|---|---|---|---|---|---|---|
CD↓ | EMD↓ | IoU↑ | CD↓ | EMD↓ | IoU↑ | CD↓ | EMD↓ | IoU↑ | |
Air plane A | 0.23 | 1.07 | 0.77 | 0.17 | 0.94 | 0.81 | 0.15 | 0.90 | 0.81 |
Air plane B | 0.82 | 1.93 | 0.61 | 0.64 | 1.67 | 0.62 | 0.40 | 1.43 | 0.69 |
Air plane C | 3.20 | 3.73 | 0.40 | 1.31 | 2.39 | 0.55 | 0.68 | 1.98 | 0.61 |
Air plane D | 1.60 | 3.18 | 0.48 | 0.92 | 2.29 | 0.51 | 0.78 | 2.30 | 0.53 |
平均 | 1.46 | 2.48 | 0.56 | 0.76 | 1.82 | 0.62 | 0.50 | 1.65 | 0.66 |
Car A | 0.62 | 1.83 | 0.56 | 0.70 | 1.57 | 0.66 | 0.40 | 1.53 | 0.67 |
Car B | 0.37 | 1.50 | 0.64 | 0.85 | 1.82 | 0.61 | 0.33 | 1.42 | 0.69 |
Car C | 0.99 | 2.33 | 0.45 | 7.46 | 3.52 | 0.51 | 0.62 | 1.82 | 0.59 |
Car D | 0.76 | 2.04 | 0.54 | 0.76 | 1.91 | 0.55 | 0.47 | 1.69 | 0.63 |
平均 | 0.69 | 1.92 | 0.55 | 2.44 | 2.21 | 0.58 | 0.45 | 1.62 | 0.65 |
Chair A | 1.59 | 3.16 | 0.46 | 0.92 | 2.43 | 0.54 | 0.51 | 1.68 | 0.71 |
Chair B | 5.04 | 5.15 | 0.32 | 2.00 | 3.43 | 0.43 | 1.41 | 2.71 | 0.56 |
Chair C | 4.61 | 5.00 | 0.29 | 2.09 | 3.35 | 0.43 | 1.32 | 2.69 | 0.59 |
Chair D | 4.50 | 5.18 | 0.32 | 1.86 | 2.97 | 0.49 | 1.66 | 2.93 | 0.52 |
平均 | 3.94 | 4.62 | 0.35 | 1.72 | 3.04 | 0.47 | 1.22 | 2.50 | 0.59 |
Table A | 7.41 | 6.34 | 0.25 | 2.11 | 3.38 | 0.41 | 1.64 | 2.90 | 0.50 |
Table B | 5.38 | 5.64 | 0.25 | 2.22 | 3.54 | 0.36 | 1.05 | 2.41 | 0.55 |
Table C | 1.57 | 2.92 | 0.41 | 2.21 | 2.88 | 0.43 | 0.53 | 1.84 | 0.67 |
Table D | 4.44 | 4.96 | 0.32 | 2.56 | 3.56 | 0.40 | 0.89 | 2.17 | 0.62 |
平均 | 4.70 | 4.96 | 0.31 | 2.28 | 3.34 | 0.40 | 1.03 | 2.33 | 0.59 |
Fig. 6 Qualitative comparison of self-reconstruction results with state-of-the-art methods ((a) AtlasNet; (b) LOGAN; (c) CFPDAE-Ours; (d) Ground truth)
类别 | AtlasNet | CFPDAE (本文方法) | ||
---|---|---|---|---|
air plane A | 0.40 | 1.21 | 0.29 | 0.79 |
air plane B | 0.17 | 1.13 | 0.19 | 0.61 |
air plane C | 0.48 | 0.98 | 0.23 | 0.68 |
air plane D | 0.30 | 1.07 | 0.16 | 0.60 |
平均 | 0.34 | 1.10 | 0.22 | 0.67 |
Table 2 Qualitative analysis of correspondence matching results
类别 | AtlasNet | CFPDAE (本文方法) | ||
---|---|---|---|---|
air plane A | 0.40 | 1.21 | 0.29 | 0.79 |
air plane B | 0.17 | 1.13 | 0.19 | 0.61 |
air plane C | 0.48 | 0.98 | 0.23 | 0.68 |
air plane D | 0.30 | 1.07 | 0.16 | 0.60 |
平均 | 0.34 | 1.10 | 0.22 | 0.67 |
多阶段监督的使用情况 | CD↓ | EMD↓ | IoU↑ |
---|---|---|---|
{} | 1.52 | 2.73 | 0.48 |
{16} | 0.96 | 2.47 | 0.57 |
{16,64} | 0.78 | 2.15 | 0.62 |
{16,256} | 0.76 | 2.06 | 0.63 |
{16,64,256} | 0.64 | 1.97 | 0.65 |
{16,64,256,1024} | 0.51 | 1.68 | 0.71 |
Table 3 Ablation study analysis of multi-stage supervision on deep neural network learning performance (CD: ×1000, EMD: ×100)
多阶段监督的使用情况 | CD↓ | EMD↓ | IoU↑ |
---|---|---|---|
{} | 1.52 | 2.73 | 0.48 |
{16} | 0.96 | 2.47 | 0.57 |
{16,64} | 0.78 | 2.15 | 0.62 |
{16,256} | 0.76 | 2.06 | 0.63 |
{16,64,256} | 0.64 | 1.97 | 0.65 |
{16,64,256,1024} | 0.51 | 1.68 | 0.71 |
Fig. 9 Examples of shape geometry transfer applications ((a) Straight chair to armchair; (b) Straight chair to swivel chair; (c) Sofa to swivel chair)
[1] | WANG N Y, ZHANG Y D, LI Z W, et al. Pixel2Mesh: generating 3D mesh models from single RGB images[C]// The 15th European Conference on Computer Vision. Cham: Springer, 2018: 55-71. |
[2] | LI J, XU K, CHAUDHURI S, et al. Grass: generative recursive autoencoders for shape structures[J]. ACM Transactions on Graphics (TOG), 2017, 36(4): 52. |
[3] | QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]// The 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 5105-5114. |
[4] | BEN-CHEN M, GOTSMAN C. Characterizing shape using conformal factors[C]// The 1st Eurographics Conference on 3D Object Retrieval. Goslar: Eurographics Association, 2008: 1-8. |
[5] | HUANG Q X, WICKE M, ADAMS B, et al. Shape decomposition using modal analysis[J]. Computer Graphics Forum, 2009, 28(2): 407-416. |
[6] | KATZ S, TAL A. Hierarchical mesh decomposition using fuzzy clustering and cuts[J]. ACM Transactions on Graphics, 2003, 22(3): 954-961. |
[7] | SHAPIRA L, SHALOM S, SHAMIR A, et al. Contextual part analogies in 3D objects[J]. International Journal of Computer Vision, 2010, 89(2/3): 309-326. |
[8] | ZHANG J Y, ZHENG J M, WU C L, et al. Variational mesh decomposition[J]. ACM Transactions on Graphics, 2012, 31(3): 21. |
[9] | KALOGERAKIS E, HERTZMANN A, SINGH K. Learning 3D mesh segmentation and labeling[J]. ACM Transactions on Graphics, 2010, 29(4): 102. |
[10] | KALOGERAKIS E, AVERKIOU M, MAJI S, et al. 3D shape segmentation with projective convolutional networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 6630-6639. |
[11] | QI C R, SU H, KAICHUN M, et al. PointNet: deep learning on point sets for 3d classification and segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 11-85. |
[12] | YI L, SU H, GUO X W, et al. SyncSpecCNN: synchronized spectral CNN for 3D shape segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 6584-6592. |
[13] | WU Z R, SONG S R, KHOSLA A, et al.3D ShapeNets: a deep representation for volumetric shapes[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2015: 1912-1920. |
[14] | XIAO Y P, LAI Y K, ZHANG F L, et al. A survey on deep geometry learning: from a representation perspective[J]. Computational Visual Media, 2020, 6(2): 113-133. |
[15] | WANG J Y, CHENG Z Y, ZHAO N, et al. On-the-fly point feature representation for point clouds analysis[C]// The 32nd ACM International Conference on Multimedia. New York: ACM, 2024: 9204-9213. |
[16] | CHEN Y R, WEI P J, LIU Z H, et al. FASTC: a fast attentional framework for semantic traversability classification using point cloud[EB/OL]. [2024-03-18]. https://arxiv.org/abs/2406.16564. |
[17] | YUAN D, FERMÜLLER C, RABBANI T, et al. A linear time and space local point cloud geometry encoder via vectorized kernel mixture (VecKM)[EB/OL]. [2024-03-18]. https://arxiv.org/abs/2404.01568. |
[18] | REN D Y, MA Z, CHEN Y P, et al. Spiking PointNet: spiking neural networks for point clouds[C]// The 37th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2023: 1811. |
[19] | QIN C, YOU H X, WANG L C, et al. PointDAN: a multi-scale 3D domain adaption network for point cloud representation[EB/OL]. [2024-03-18]. https://arxiv.org/abs/1911.02744. |
[20] | LIU X H, HAN Z Z, LIU Y S, et al. Point2Sequence: learning the shape representation of 3D point clouds with an attention-based sequence to sequence network[C]// The 33th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 8778-8785. |
[21] | GUO Z, FENG C C. Using multi-scale and hierarchical deep convolutional features for 3D semantic classification of TLS point clouds[J]. International Journal of Geographical Information Science, 2020, 34(4): 661-680. |
[22] | GADELHA M, WANG R, MAJI S. Multiresolution tree networks for 3D point cloud processing[C]// The 15th European Conference on Computer Vision. Cham: Springer, 2018: 105-122. |
[23] | YIN K X, CHEN Z Q, HUANG H, et al. LOGAN: unpaired shape transform in latent overcomplete space[J]. ACM Transactions on Graphics, 2019, 38(6): 198. |
[24] | SINHA A, UNMESH A, HUANG Q X, et al. SurfNet: generating 3D shape surfaces using deep residual networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 791-800. |
[25] | WANG W Y, CEYLAN D, MECH R, et al. 3DN: 3D deformation network[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 1038-1046. |
[26] | YUMER M E, MITRA N J. Learning semantic deformation flows with 3D convolutional networks[C]// The 14th European Conference on Computer Vision. Cham: Springer, 2016: 294-311. |
[27] | YANG Y Q, FENG C, SHEN Y R, et al. FoldingNet: point cloud auto-encoder via deep grid deformation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 206-215. |
[28] | GROUEIX T, FISHER M, KIM V G, et al. A papier-mâché approach to learning 3D surface generation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 216-224. |
[29] | MEHR E, JOURDAN A, THOME N, et al. DiscoNet: shapes learning on disconnected manifolds for 3D editing[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 3473-3482. |
[30] | YIN K X, HUANG H, COHEN-OR D, et al. P2P-Net: bidirectional point displacement net for shape transform[J]. ACM Transactions on Graphics, 2018, 37(4): 152. |
[31] | JIANG C M, HUANG J W, TAGLIASACCHI A, et al. ShapeFlow: learnable deformations among 3D shapes[C]// The 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 9745-9757. |
[32] | NIEMEYER M, MESCHEDER L, OECHSLE M, et al. Occupancy flow: 4D reconstruction by learning particle dynamics[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 5378-5388. |
[33] | YANG G D, HUANG X, HAO Z K, et al. PointFlow: 3D point cloud generation with continuous normalizing flows[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE, 2019: 4540-4549. |
[34] | CHEN R T Q, RUBANOVA Y, BETTENCOURT J, et al. Neural ordinary differential equations[C]// The 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018, 31: 6572-6583. |
[35] | GRATHWOHL W, CHEN R T Q, BETTENCOURT J, et al. FFJORD: free-form continuous dynamics for scalable reversible generative models[EB/OL]. [2024-03-18]. https://arxiv.org/abs/1810.01367. |
[36] | MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: representing scenes as neural radiance fields for view synthesis[J]. Communications of the ACM, 2022, 65(1): 99-106. |
[37] | GARZIA S, RYGIEL P, DUMMER S, et al. Neural fields for continuous periodic motion estimation in 4D cardiovascular imaging[EB/OL]. [2024-03-18]. https://arxiv.org/abs/2407.20728. |
[38] | MARTEL J N P, LINDELL D B, LIN C Z, et al. ACORN: adaptive coordinate networks for neural scene representation[EB/OL]. [2024-03-18]. https://arxiv.org/abs/2105.02788. |
[39] |
董相涛, 马鑫, 潘成伟, 等. 室外大场景神经辐射场综述[J]. 图学学报, 2024, 45(4): 631-649.
DOI |
DONG X T, MA X, PAN C W, et al. A review of neural radiance fields for outdoor large scenes[J]. Journal of Graphics, 2024, 45(4): 631-649. (in Chinese)
DOI |
|
[40] |
成欢, 王硕, 李孟, 等. 面向自动驾驶场景的神经辐射场综述[J]. 图学学报, 2023, 44(6): 1091-1103.
DOI |
CHENG H, WANG S, LI M, et al. A review of neural radiance field for autonomous driving scene[J]. Journal of Graphics, 2023, 44(6): 1091-1103. (in Chinese)
DOI |
|
[41] | YI L, KIM V G, CEYLAN D, et al. A scalable active framework for region annotation in 3D shape collections[J]. ACM Transactions on Graphics, 2016, 35(6): 210. |
[42] | WANG P S, LIU Y, GUO Y X, et al. O-CNN: octree-based convolutional neural networks for 3D shape analysis[J]. ACM Transactions on Graphics, 2017, 36(4): 72. |
[43] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7132-7141. |
[44] | KERBL B, KOPANAS G, LEIMKÜHLER T, et al. 3D Gaussian splatting for real-time radiance field rendering[J]. ACM Transactions on Graphics, 2023, 42(4): 139. |
[45] | CROITORU F A, HONDRU V, IONESCU R T, et al. Diffusion models in vision: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(9): 10850-10869. |
[1] | LI Qiong, KAO Yueying, ZHANG Ying, XU Pei. Review on object detection in UAV aerial images [J]. Journal of Graphics, 2024, 45(6): 1145-1164. |
[2] | LIU Canfeng, SUN Hao, DONG Hui. Molecular amplification time series prediction research combining Transformer with Kolmogorov-Arnold network [J]. Journal of Graphics, 2024, 45(6): 1256-1265. |
[3] | SONG Sicheng, CHEN Chen, LI Chenhui, WANG Changbo. Spatiotemporal data visualization based on density map multi-target tracking [J]. Journal of Graphics, 2024, 45(6): 1289-1300. |
[4] | XU Dandan, CUI Yong, ZHANG Shiqian, LIU Yucong, LIN Yusong. Optimizing the visual effects of 3D rendering in medical imaging: a technical review [J]. Journal of Graphics, 2024, 45(5): 879-891. |
[5] | HU Fengkuo, YE Lan, TAN Xianfeng, ZHANG Qinzhan, HU Zhixin, FANG Qing, WANG Lei, MAN Xiaofeng. A refined YOLOv8-based algorithm for lightweight pavement disease detection [J]. Journal of Graphics, 2024, 45(5): 892-900. |
[6] | LIU Yiyan, HAO Tingnan, HE Chen, CHANG Yingjie. Photovoltaic cell surface defect detection based on DBBR-YOLO [J]. Journal of Graphics, 2024, 45(5): 913-921. |
[7] | ZHAI Yongjie, LI Jiawei, CHEN Nianhao, WANG Qianming, WANG Xinying. The vehicle parts detection method enhanced with Transformer integration [J]. Journal of Graphics, 2024, 45(5): 930-940. |
[8] | JIANG Xiaoheng, DUAN Jinzhong, LU Yang, CUI Lisha, XU Mingliang. Fusing prior knowledge reasoning for surface defect detection [J]. Journal of Graphics, 2024, 45(5): 957-967. |
[9] | XIONG Chao, WANG Yunyan, LUO Yuhao. Multi-view stereo network reconstruction with feature alignment and context-guided [J]. Journal of Graphics, 2024, 45(5): 1008-1016. |
[10] | HU Xin, CHANG Yashu, QIN Hao, XIAO Jian, CHENG Hongliang. Binocular ranging method based on improved YOLOv8 and GMM image point set matching [J]. Journal of Graphics, 2024, 45(4): 714-725. |
[11] | NIU Weihua, GUO Xun. Rotating target detection algorithm in ship remote sensing images based on YOLOv8 [J]. Journal of Graphics, 2024, 45(4): 726-735. |
[12] | LI Tao, HU Ting, WU Dandan. Monocular depth estimation combining pyramid structure and attention mechanism [J]. Journal of Graphics, 2024, 45(3): 454-463. |
[13] | ZHU Guanghui, MIAO Jun, HU Hongli, SHEN Ji, DU Ronghua. 3D piece-wise planar reconstruction from a single indoor image based on self-augmented -attention mechanism [J]. Journal of Graphics, 2024, 45(3): 464-471. |
[14] | WANG Zhiru, CHANG Yuan, LU Peng, PAN Chengwei. A review on neural radiance fields acceleration [J]. Journal of Graphics, 2024, 45(1): 1-13. |
[15] | WANG Xinyu, LIU Hui, ZHU Jicheng, SHENG Yurui, ZHANG Caiming. Deep multimodal medical image fusion network based on high-low frequency feature decomposition [J]. Journal of Graphics, 2024, 45(1): 65-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||