Journal of Graphics ›› 2025, Vol. 46 ›› Issue (1): 81-93.DOI: 10.11996/JG.j.2095-302X.2025010081
• Image Processing and Computer Vision • Previous Articles Next Articles
SUN Qianlai(), LIN Shaohang, LIU Dongfeng, SONG Xiaoyang, LIU Jiayao, LIU Ruizhen
Received:
2024-06-23
Accepted:
2024-10-28
Online:
2025-02-28
Published:
2025-02-14
About author:
First author contact:SUN Qianlai (1976-), associate professor, Ph.D. His main research interests cover include intelligent control theory and applications, machine vision. E-mail:2000025@tyust.edu.cn
Supported by:
CLC Number:
SUN Qianlai, LIN Shaohang, LIU Dongfeng, SONG Xiaoyang, LIU Jiayao, LIU Ruizhen. Few-shot pointer meters detection method based on meta-learning[J]. Journal of Graphics, 2025, 46(1): 81-93.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025010081
方法 | 代表模型 | 特点 |
---|---|---|
基于元学习的方法 | Meta-RCNN[ Meta-DETR[ | 检测精度高,适用于样本数量极少的任务 |
基于迁移学习的方法 | CFA-DeFRCN[ | 易于实现,但不适用于样本数量极少的任务 |
基于数据增强的方法 | LVC[ | 易于实现,但实时性较差,定位精度较低 |
基于度量学习的方法 | CME[ ARSML[ | 适用于样本数量极少的任务,但定位精度低 |
Table 1 Comparison on the ways of few-shot object detection
方法 | 代表模型 | 特点 |
---|---|---|
基于元学习的方法 | Meta-RCNN[ Meta-DETR[ | 检测精度高,适用于样本数量极少的任务 |
基于迁移学习的方法 | CFA-DeFRCN[ | 易于实现,但不适用于样本数量极少的任务 |
基于数据增强的方法 | LVC[ | 易于实现,但实时性较差,定位精度较低 |
基于度量学习的方法 | CME[ ARSML[ | 适用于样本数量极少的任务,但定位精度低 |
Stage | 卷积层 | 输入尺寸 | 通道数 | 层数 |
---|---|---|---|---|
1 | Conv 3×3 | 224×224 | 32 | 1 |
2 | MBConv1, k3×3 | 112×112 | 16 | 1 |
3 | MBConv6, k3×3 | 112×112 | 24 | 2 |
4 | MBConv6, k3×3 | 56×56 | 40 | 2 |
5 | MBConv6, k3×3 | 28×28 | 80 | 3 |
6 | MBConv6, k3×3 | 14×14 | 112 | 3 |
7 | MBConv6, k3×3 | 14×14 | 192 | 4 |
8 | MBConv6, k3×3 | 7×7 | 320 | 1 |
9 | Conv 1×1 & Pooling & FC | 7×7 | 1280 | 1 |
Table 2 Basic structure of the Efficientnet B0
Stage | 卷积层 | 输入尺寸 | 通道数 | 层数 |
---|---|---|---|---|
1 | Conv 3×3 | 224×224 | 32 | 1 |
2 | MBConv1, k3×3 | 112×112 | 16 | 1 |
3 | MBConv6, k3×3 | 112×112 | 24 | 2 |
4 | MBConv6, k3×3 | 56×56 | 40 | 2 |
5 | MBConv6, k3×3 | 28×28 | 80 | 3 |
6 | MBConv6, k3×3 | 14×14 | 112 | 3 |
7 | MBConv6, k3×3 | 14×14 | 192 | 4 |
8 | MBConv6, k3×3 | 7×7 | 320 | 1 |
9 | Conv 1×1 & Pooling & FC | 7×7 | 1280 | 1 |
操作名称 | 输入尺寸 | 输出尺寸 | 层数 |
---|---|---|---|
Layer normalization | l×d | l×d | 1 |
Linear layer & GELU | l×d | l×d | 1 |
Linear layer & GELU | l×d | l×d/2 | 1 |
Linear layer & GELU | l×d/2 | l×d/4 | 1 |
Linear layer | l×d/4 | l×1 | 1 |
Table 3 Structure of the scoring network
操作名称 | 输入尺寸 | 输出尺寸 | 层数 |
---|---|---|---|
Layer normalization | l×d | l×d | 1 |
Linear layer & GELU | l×d | l×d | 1 |
Linear layer & GELU | l×d | l×d/2 | 1 |
Linear layer & GELU | l×d/2 | l×d/4 | 1 |
Linear layer | l×d/4 | l×1 | 1 |
名称 | 参数 |
---|---|
CPU | Intel Xeon Gold 6133 |
内存 | 32 G |
GPU | NVIDIA GeForce RTX A5000 24 G |
操作系统 | Ubuntu 18.04 LTS |
CUDA | 11.3 |
深度学习框架 | Pytorch-1.12.0 |
编程语言 | Python3.8 |
Table 4 Experimental environment
名称 | 参数 |
---|---|
CPU | Intel Xeon Gold 6133 |
内存 | 32 G |
GPU | NVIDIA GeForce RTX A5000 24 G |
操作系统 | Ubuntu 18.04 LTS |
CUDA | 11.3 |
深度学习框架 | Pytorch-1.12.0 |
编程语言 | Python3.8 |
Model | shot | AP50 | AP75 | AP50_95 | Macs/G | Param/M |
---|---|---|---|---|---|---|
ARSML | 1 | 0.762 | 0.224 | 0.409 | - | - |
10 | 0.892 | 0.617 | 0.550 | |||
20 | 0.934 | 0.778 | 0.619 | |||
Meta-RCNN | 1 | 0.323 | - | - | 35.62 | 45.93 |
10 | 0.833 | - | - | |||
20 | 0.908 | - | - | |||
CFA-DeFRCN | 1 | 0.809 | 0.114 | 0.376 | 30.47 | 42.06 |
10 | 0.882 | 0.546 | 0.505 | |||
20 | 0.930 | 0.762 | 0.646 | |||
LVC | 1 | 0.672 | 0.134 | 0.352 | 31.54 | 43.17 |
10 | 0.864 | 0.519 | 0.496 | |||
20 | 0.923 | 0.749 | 0.630 | |||
baseline | 1 | 0.854 | 0.560 | 0.523 | 12.74 | 28.10 |
10 | 0.949 | 0.925 | 0.707 | |||
20 | 0.978 | 0.920 | 0.722 | |||
proposed | 1 | 0.841 | 0.156 | 0.369 | 3.24 | 9.27 |
10 | 0.912 | 0.802 | 0.629 | |||
20 | 0.942 | 0.875 | 0.696 |
Table 5 Comparison with advanced few-shot model for pointer meters detection
Model | shot | AP50 | AP75 | AP50_95 | Macs/G | Param/M |
---|---|---|---|---|---|---|
ARSML | 1 | 0.762 | 0.224 | 0.409 | - | - |
10 | 0.892 | 0.617 | 0.550 | |||
20 | 0.934 | 0.778 | 0.619 | |||
Meta-RCNN | 1 | 0.323 | - | - | 35.62 | 45.93 |
10 | 0.833 | - | - | |||
20 | 0.908 | - | - | |||
CFA-DeFRCN | 1 | 0.809 | 0.114 | 0.376 | 30.47 | 42.06 |
10 | 0.882 | 0.546 | 0.505 | |||
20 | 0.930 | 0.762 | 0.646 | |||
LVC | 1 | 0.672 | 0.134 | 0.352 | 31.54 | 43.17 |
10 | 0.864 | 0.519 | 0.496 | |||
20 | 0.923 | 0.749 | 0.630 | |||
baseline | 1 | 0.854 | 0.560 | 0.523 | 12.74 | 28.10 |
10 | 0.949 | 0.925 | 0.707 | |||
20 | 0.978 | 0.920 | 0.722 | |||
proposed | 1 | 0.841 | 0.156 | 0.369 | 3.24 | 9.27 |
10 | 0.912 | 0.802 | 0.629 | |||
20 | 0.942 | 0.875 | 0.696 |
Model | 轻量化主干网络 | shot | AP50 | AP75 | AP50_95 | Macs/G | Param/M |
---|---|---|---|---|---|---|---|
Meta-DETR-R50(baseline) | 1 | 0.854 | 0.560 | 0.523 | 12.74 | 28.10 | |
10 | 0.949 | 0.925 | 0.707 | ||||
20 | 0.978 | 0.920 | 0.722 | ||||
Meta-DETR-Mobv2 | √ | 1 | 0.216 | 0.166 | 0.135 | 2.69 | 5.96 |
10 | 0.833 | 0.652 | 0.523 | ||||
20 | 0.875 | 0.700 | 0.550 | ||||
Meta-DETR-Effb0 | √ | 1 | 0.655 | 0.351 | 0.359 | 2.95 | 7.01 |
10 | 0.867 | 0.565 | 0.520 | ||||
20 | 0.901 | 0.791 | 0.627 | ||||
Meta-DETR-Effb1 | √ | 1 | 0.781 | 0.346 | 0.411 | 3.47 | 8.56 |
10 | 0.865 | 0.723 | 0.587 | ||||
20 | 0.934 | 0.866 | 0.705 | ||||
Sparse-Meta-DETR-Effb1(proposed) | √ | 1 | 0.841 | 0.156 | 0.369 | 3.24 | 9.27 |
10 | 0.912 | 0.802 | 0.629 | ||||
20 | 0.942 | 0.875 | 0.696 |
Table 6 Comparison of detection models with different backbone
Model | 轻量化主干网络 | shot | AP50 | AP75 | AP50_95 | Macs/G | Param/M |
---|---|---|---|---|---|---|---|
Meta-DETR-R50(baseline) | 1 | 0.854 | 0.560 | 0.523 | 12.74 | 28.10 | |
10 | 0.949 | 0.925 | 0.707 | ||||
20 | 0.978 | 0.920 | 0.722 | ||||
Meta-DETR-Mobv2 | √ | 1 | 0.216 | 0.166 | 0.135 | 2.69 | 5.96 |
10 | 0.833 | 0.652 | 0.523 | ||||
20 | 0.875 | 0.700 | 0.550 | ||||
Meta-DETR-Effb0 | √ | 1 | 0.655 | 0.351 | 0.359 | 2.95 | 7.01 |
10 | 0.867 | 0.565 | 0.520 | ||||
20 | 0.901 | 0.791 | 0.627 | ||||
Meta-DETR-Effb1 | √ | 1 | 0.781 | 0.346 | 0.411 | 3.47 | 8.56 |
10 | 0.865 | 0.723 | 0.587 | ||||
20 | 0.934 | 0.866 | 0.705 | ||||
Sparse-Meta-DETR-Effb1(proposed) | √ | 1 | 0.841 | 0.156 | 0.369 | 3.24 | 9.27 |
10 | 0.912 | 0.802 | 0.629 | ||||
20 | 0.942 | 0.875 | 0.696 |
ρ | shot | AP50 | AP75 | AP50_95 | Macs/G | Param/M |
---|---|---|---|---|---|---|
- | 1 | 0.781 | 0.346 | 0.411 | 3.47 | 8.56 |
10 | 0.865 | 0.723 | 0.587 | |||
20 | 0.934 | 0.866 | 0.705 | |||
ρ=10% | 1 | 0.764 | 0.148 | 0.358 | 3.13 | 9.27 |
10 | 0.900 | 0.728 | 0.562 | |||
20 | 0.926 | 0.880 | 0.701 | |||
ρ=30% | 1 | 0.841 | 0.156 | 0.369 | 3.24 | 9.27 |
10 | 0.912 | 0.802 | 0.629 | |||
20 | 0.942 | 0.875 | 0.696 | |||
ρ=50% | 1 | 0.841 | 0.156 | 0.369 | 3.35 | 9.27 |
10 | 0.921 | 0.832 | 0.678 | |||
20 | 0.953 | 0.820 | 0.670 |
Table 7 Result of the score-network ablation experiment
ρ | shot | AP50 | AP75 | AP50_95 | Macs/G | Param/M |
---|---|---|---|---|---|---|
- | 1 | 0.781 | 0.346 | 0.411 | 3.47 | 8.56 |
10 | 0.865 | 0.723 | 0.587 | |||
20 | 0.934 | 0.866 | 0.705 | |||
ρ=10% | 1 | 0.764 | 0.148 | 0.358 | 3.13 | 9.27 |
10 | 0.900 | 0.728 | 0.562 | |||
20 | 0.926 | 0.880 | 0.701 | |||
ρ=30% | 1 | 0.841 | 0.156 | 0.369 | 3.24 | 9.27 |
10 | 0.912 | 0.802 | 0.629 | |||
20 | 0.942 | 0.875 | 0.696 | |||
ρ=50% | 1 | 0.841 | 0.156 | 0.369 | 3.35 | 9.27 |
10 | 0.921 | 0.832 | 0.678 | |||
20 | 0.953 | 0.820 | 0.670 |
[1] | 郝琨, 韩冰, 李志圣, 等. 基于投影阈值分割和数字序列校正的高噪声数字仪表图像识别方法[J]. 电子科技大学学报, 2023, 52(5): 728-738. |
HAO K, HAN B, LI Z S, et al. High noise digital instrument image recognition method based on projection threshold segmentation and number sequence correction[J]. Journal of University of Electronic Science and Technology of China, 2023, 52(5): 728-738 (in Chinese). | |
[2] |
毛爱坤, 刘昕明, 陈文壮, 等. 改进YOLOv5算法的变电站仪表目标检测方法[J]. 图学学报, 2023, 44(3): 448-455.
DOI |
MAO A K, LIU X M, CHEN W Z, et al. Improved substation instrument target detection method for YOLOv5 algorithm[J]. Journal of Graphics, 2023, 44(3): 448-455 (in Chinese). | |
[3] | 范新南, 黄伟盛, 史朋飞, 等. 基于改进YOLOv4的嵌入式变电站仪表检测算法[J]. 图学学报, 2022, 43(3): 396-403. |
FAN X N, HUANG W S, SHI P F, et al. Embedded substation instrument detection algorithm based on improved YOLOv4[J]. Journal of Graphics, 2022, 43(3): 396-403 (in Chinese). | |
[4] |
赵振兵, 马迪雅, 石颖, 等. 基于改进YOLOX的变电站仪表外观缺陷检测算法[J]. 图学学报, 2023, 44(5): 937-946.
DOI |
ZHAO Z B, MA D Y, SHI Y, et al. Appearance defect detection algorithm of substation instrument based on improved YOLOX[J]. Journal of Graphics, 2023, 44(5): 937-946 (in Chinese). | |
[5] | 任志玲, 曹正言, 任立然. 基于SCC-YOLO的指针式仪表轻量化检测方法[J]. 仪表技术与传感器, 2024(9): 39-47, 52. |
REN Z L, CAO Z Y, REN L R. Lightweight detection method for pointer meters based on SCC-YOLO[J]. Instrument Technique and Sensor, 2024(9): 39-47, 52 (in Chinese). | |
[6] | 刘萌, 王波, 罗鹏, 等. 适应于户外场景下低成像质量的指针式表计读数智能识别方法[EB/OL]. (2024-07-24) [2024-08-22]. https://doi.org/10.13336/j.1003-6520.hve.20231408. |
LIU M, WANG B, LUO P, et al. Intelligent recognition method of pointer meter reading suitable for low imaging quality in outdoor scene[EB/OL]. (2024-07-24) [2024-08-12]. https://doi.org/10.13336/j.1003-6520.hve.20231408 (in Chinese). | |
[7] | 赵丽娜, 赵丽娟, 宁子达, 等. 一种SF6压力指针式仪表的定位识别方法[EB/OL]. (2022-11-03) [2024-04-19]. https://kns.cnki.net/kcms/detail/23.1202.TH.20221103.1102.002.html. |
ZHAO L N, ZHAO L J, NING Z D, et al. A positioning recognition method for SF6 pressure pointer meter[EB/OL]. (2022-11-03) [2024-04-19]. http://kns.cnki.net/kcms/detail/23.1202.TH.20221103.1102.002.html (in Chinese). | |
[8] | 徐小强, 陈旭, 冒燕. 基于戴明回归和ROI细化的指针式仪表读数技术[J]. 江苏大学学报(自然科学版), 2023, 44(3): 324-329. |
XU X Q, CHEN X, MAO Y. Reading technology of pointer instrument based on Deming regression and ROI thinning[J]. Journal of Jiangsu University (Natural Science Edition), 2023, 44(3): 324-329 (in Chinese). | |
[9] | 王欣然, 张斌, 湛敏, 等. 基于改进的Faster RCNN的仪表自动识别方法[J]. 机电工程, 2024, 41(3): 532-539. |
WANG X R, ZHANG B, ZHAN M, et al. Automatic instrument identification based on improved Faster RCNN[J]. Journal of Mechanical & Electrical Engineering, 2024, 41(3): 532-539 (in Chinese). | |
[10] | 刘海龙, 马波, 张奇志. 钻井现场指针式仪表读数自动识别方法研究[J]. 控制工程, 2023, 30(9): 1665-1672. |
LIU H L, MA B, ZHANG Q Z. Study on automatic identification method of pointer instrument reading in drilling field[J]. Control Engineering of China, 2023, 30(9): 1665-1672 (in Chinese). | |
[11] | 黄思远, 樊绍胜, 王子扬. 基于CenterNet和DeepLabv3+的变电站指针式仪表读数识别方法[J]. 电力学报, 2022, 37(3): 232-243. |
HUANG S Y, FAN S S, WANG Z Y. Substation pointer meter reading recognition method based on CenterNet and DeepLabv3+[J]. Journal of Electric Power, 2022, 37(3): 232-243 (in Chinese). | |
[12] | ZHANG H Y, RAO Y B, SHAO J, et al. Reading various types of pointer meters under extreme motion blur[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 5019815. |
[13] | KAUL P, XIE W D, ZISSERMAN A, et al. Label, verify, correct: a simple few shot object detection method[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 14217-14227. |
[14] | GUIRGUIS K, HENDAWY A, ESKANDAR G, et al. CFA: constraint-based finetuning approach for generalized few-shot object detection[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2022: 4038-4048. |
[15] | LI B H, YANG B Y, LIU C, et al. Beyond max-margin: class margin equilibrium for few-shot object detection[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 7359-7368. |
[16] | YAN X P, CHEN Z L, XU A N, et al. Meta R-CNN: towards general solver for instance-level low-shot learning[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 9576-9585. |
[17] | HAN G X, HUANG S Y, MA J W, et al. Meta faster R-CNN: towards accurate few-shot object detection with attentive feature alignment[C]// The 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 780-789. |
[18] | ZHANG G J, LUO Z P, CUI K W, et al. Meta-DETR: image-level few-shot detection with inter-class correlation exploitation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 12832-12843. |
[19] | 翟永杰, 赵振远, 王乾铭, 等. 基于人工-真实样本度量学习的指针式仪表检测方法[J]. 电测与仪表, 2022, 59(10): 174-183. |
ZHAI Y J, ZHAO Z Y, WANG Q M, et al. Pointer meter detection method based on artificial-real sample metric learning[J]. Electrical Measurement & Instrumentation, 2022, 59(10): 174-183 (in Chinese). | |
[20] | 史燕燕, 史殿习, 乔子腾, 等. 小样本目标检测研究综述[J]. 计算机学报, 2023, 46(8): 1753-1780. |
SHI Y Y, SHI D X, QIAO Z T, et al. A survey on recent advances in few-shot object detection[J]. Chinese Journal of Computers, 2023, 46(8): 1753-1780 (in Chinese). | |
[21] | O'SHEA K, NASH R. An introduction to convolutional neural networks[EB/OL]. (2015-11-02) [2024-04-06]. https://arxiv.org/abs/1511.08458. |
[22] | SCABINI L F S, BRUNO O M. Structure and performance of fully connected neural networks: emerging complex network properties[EB/OL]. (2021-07-29) [2024-04-06]. https://arxiv.org/abs/2107.14062. |
[23] | VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]// The 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2016: 3637-3645. |
[24] | LI J, CHENG J H, SHI J Y, et al. Brief introduction of back propagation (BP) neural network algorithm and its improvement[C]// Advances in Computer Science and Information Engineering. Cham: Springer, 2012: 553-558. |
[25] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// The 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
[26] |
张阳婷, 黄德启, 王东伟, 等. 基于深度学习的目标检测算法研究与应用综述[J]. 计算机工程与应用, 2023, 59(18): 1-13.
DOI |
ZHANG Y T, HUANG D Q, WANG D W, et al. Review on research and application of deep learning-based target detection algorithms[J]. Computer Engineering and Applications, 2023, 59(18): 1-13 (in Chinese).
DOI |
|
[27] | TAN M X, LE Q. EfficientNet: rethinking model scaling for convolutional neural networks[EB/OL]. (2020-09-11) [2024-04-19]. http://proceedings.mlr.press/v97/tan19a.html. |
[28] | BA J L, KIROS J R, HINTON G E. Layer normalization[EB/OL]. (2016-07-21) [2024-04-19]. https://arxiv.org/abs/1607.06450. |
[29] | KUNC V, KLÉMA J. Three decades of activations: a comprehensive survey of 400 activation functions for neural networks[EB/OL]. (2024-02-14) [2024-04-19]. https://arxiv.org/abs/2402.09092. |
[30] | CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 213-229. |
[31] | ROH B, SHIN J W, SHIN W, et al. Sparse DETR: efficient end-to-end object detection with learnable sparsity[EB/OL]. (2022-03-04) [2024-04-19]. https://openreview.net/forum?id=RRGVCN8kjim. |
[32] | MA Y D, LIU Q, QIAN Z B. Automated image segmentation using improved PCNN model based on cross-entropy[C]// 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing. New York: IEEE Press, 2004: 743-746. |
[33] | CHEN W Y, LIU Y C, KIRA Z, et al. A closer look at few-shot classification[EB/OL]. (2020-01-12) [2024-04-19]. https://openreview.net/forum?id=HkxLXnAcFQ. |
[34] | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2999-3007. |
[35] | REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 658-666. |
[36] | EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The PASCAL visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338. |
[37] | SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 4510-4520. |
[1] | CHENG Xudong, SHI Caijuan, GAO Weixiang, WANG Sen, DUAN Changyu, YAN Xiaodong. Consistent and unbiased teacher model research for domain adaptive object detection [J]. Journal of Graphics, 2025, 46(1): 114-125. |
[2] | YUAN Chao, ZHAO Mingxue, ZHANG Fengyi, FENG Xiaoyong, LI Bing, CHEN Rui. Point cloud feature enhanced 3D object detection in complex indoor scenes [J]. Journal of Graphics, 2025, 46(1): 59-69. |
[3] | WANG Yang, MA Chang, HU Ming, SUN Tao, RAO Yuan, YUAN Zhenyu. Lightweight wild bat detection method based on multi-scale feature fusion [J]. Journal of Graphics, 2025, 46(1): 70-80. |
[4] | LI Qiong, KAO Yueying, ZHANG Ying, XU Pei. Review on object detection in UAV aerial images [J]. Journal of Graphics, 2024, 45(6): 1145-1164. |
[5] | LI Zhenfeng, FU Shichen, XU Le, MENG Bo, ZHANG Xin, QING Jianjun. Research on gangue target detection algorithm based on MBI-YOLOv8 [J]. Journal of Graphics, 2024, 45(6): 1301-1312. |
[6] | LI Shengtao, HOU Liqun, DONG Yasong. Automatic reading of pointer meters based on R-YOLOv7 and MIMO-CTFNet [J]. Journal of Graphics, 2024, 45(6): 1313-1327. |
[7] | WANG Yaru, FENG Lilong, SONG Xiaoke, QU Zhuo, YANG Ke, WANG Qianming, ZHAI Yongjie. TFD-YOLOv8: a transmission line foreign object detection method [J]. Journal of Graphics, 2024, 45(5): 901-912. |
[8] | JIANG Xiaoheng, DUAN Jinzhong, LU Yang, CUI Lisha, XU Mingliang. Fusing prior knowledge reasoning for surface defect detection [J]. Journal of Graphics, 2024, 45(5): 957-967. |
[9] | ZHANG Dongping, WEI Yangyue, HE Shuji, XU Yunchao, HU Haimiao, HUANG Wenjun. Feature fusion and inter-layer transmission: an improved object detection method based on Anchor DETR [J]. Journal of Graphics, 2024, 45(5): 968-978. |
[10] | SUN Jilong, LIU Yong, ZHOU Liwei, LU Xin, HOU Xiaolong, WANG Yaqiong, WANG Zhifeng. Research on efficient detection model of tunnel lining crack based on DCNv2 and Transformer Decoder [J]. Journal of Graphics, 2024, 45(5): 1050-1061. |
[11] | LI Daxiang, JI Zhan, LIU Ying, TANG Yao. Improving YOLOv7 remote sensing image target detection algorithm [J]. Journal of Graphics, 2024, 45(4): 650-658. |
[12] | HU Xin, CHANG Yashu, QIN Hao, XIAO Jian, CHENG Hongliang. Binocular ranging method based on improved YOLOv8 and GMM image point set matching [J]. Journal of Graphics, 2024, 45(4): 714-725. |
[13] | ZENG Zhichao, XU Yue, WANG Jingyu, YE Yuanlong, HUANG Zhikai, WANG Huan. A water surface target detection algorithm based on SOE-YOLO lightweight network [J]. Journal of Graphics, 2024, 45(4): 736-744. |
[14] | GONG Yongchao, SHEN Xukun. A deep architecture for reciprocal object detection and instance segmentation [J]. Journal of Graphics, 2024, 45(4): 745-759. |
[15] | WEI Chen-hao, YANG Rui, LIU Zhen-bing, LAN Ru-shi, SUN Xi-yan, LUO Xiao-nan. YOLOv8 with bi-level routing attention for road scene object detection [J]. Journal of Graphics, 2023, 44(6): 1104-1111. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||