Journal of Graphics ›› 2023, Vol. 44 ›› Issue (6): 1212-1217.DOI: 10.11996/JG.j.2095-302X.2023061212
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
JIN Cong1(), ZHOU Man-ling1, ZHANG Jun-song1,3(
), WANG Hong-liang2, ZHANG Jia-yi2, WANG Jing4, XU Ming-liang5
Received:
2023-06-19
Accepted:
2023-09-07
Online:
2023-12-31
Published:
2023-12-17
Contact:
ZHANG Jun-song (1985-), lecturer, Ph.D. His main research interests cover intelligent audio-visual technology, mine safety engineering. E-mail:About author:
JIN Cong (1986-), associate professor, Ph.D. Her main research interests cover reinforcement learning, music artificial intelligence and audio signal processing. E-mail:jincong0623@cuc.edu.cn
Supported by:
CLC Number:
JIN Cong, ZHOU Man-ling, ZHANG Jun-song, WANG Hong-liang, ZHANG Jia-yi, WANG Jing, XU Ming-liang. DynArt ChatGPT: a platform for generating dynamic intangible cultural heritage new year paintings[J]. Journal of Graphics, 2023, 44(6): 1212-1217.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023061212
年画种类 | 色彩明度对比 | 画面构图 | 人物形象塑造 | 色彩运用 | 主题、题材 | 绘画特色 |
---|---|---|---|---|---|---|
陕西凤翔戏出年画 | 8 | 7 | 8 | 8 | 8 | 9 |
天津杨柳青年画 | 9 | 9 | 7 | 9 | 8 | 8 |
Table 1 Quantitative analysis of New Year pictures and Yangliuqing New Year pictures
年画种类 | 色彩明度对比 | 画面构图 | 人物形象塑造 | 色彩运用 | 主题、题材 | 绘画特色 |
---|---|---|---|---|---|---|
陕西凤翔戏出年画 | 8 | 7 | 8 | 8 | 8 | 9 |
天津杨柳青年画 | 9 | 9 | 7 | 9 | 8 | 8 |
评价指标 | 内容说明 |
---|---|
色彩明度对比 | 强烈的对比,明度跨越超过7个等级,使用高明度色彩,搭配黑色轮廓线,形成鲜明的对比 |
画面构图 | 以满、多、全为特点,采用平面化构图和围绕中心式布局,追求丰富、集中和饱满的创作效果 |
人物形象塑造 | 夸张、粗犷、饱满,大胆取舍和简化,注重人物形象的夸张表现,强调鲜明的特征和形象的完整性 |
色彩运用 | 以红、黄、绿、蓝原色为主,色彩鲜艳热烈,采用大量原色的运用,强调喜庆、醒目的效果 |
主题、题材 | 以庆祝喜庆场景为主题,如生肖、传统节日等,强调喜庆氛围,表达吉祥、团圆和繁荣的寓意 |
绘画技法 | 运用线条粗犷有力,形象夸张,擅长大胆取舍和简化,追求饱满、充实的艺术效果,突出喜庆和醒目的特点 |
Table 2 Shaanxi Fengxiang drama New Year picture evaluation index
评价指标 | 内容说明 |
---|---|
色彩明度对比 | 强烈的对比,明度跨越超过7个等级,使用高明度色彩,搭配黑色轮廓线,形成鲜明的对比 |
画面构图 | 以满、多、全为特点,采用平面化构图和围绕中心式布局,追求丰富、集中和饱满的创作效果 |
人物形象塑造 | 夸张、粗犷、饱满,大胆取舍和简化,注重人物形象的夸张表现,强调鲜明的特征和形象的完整性 |
色彩运用 | 以红、黄、绿、蓝原色为主,色彩鲜艳热烈,采用大量原色的运用,强调喜庆、醒目的效果 |
主题、题材 | 以庆祝喜庆场景为主题,如生肖、传统节日等,强调喜庆氛围,表达吉祥、团圆和繁荣的寓意 |
绘画技法 | 运用线条粗犷有力,形象夸张,擅长大胆取舍和简化,追求饱满、充实的艺术效果,突出喜庆和醒目的特点 |
评价指标 | 内容说明 |
---|---|
色彩明度对比 | 较柔和的对比,明度较为平衡,采用温和的色调 |
画面构图 | 常采用对称布局,追求整体平衡和谐 |
人物形象塑造 | 细腻而传神,注重人物形象的细节描绘 |
色彩运用 | 偏向柔和、温和的色调,注重色彩的和谐与平衡 |
主题、题材 | 常以日常生活、自然景观、民间故事为主题 |
绘画技法 | 线条流畅、用笔细腻,强调细节描绘,注重传统技法的继承和发展 |
Table 3 Tianjin Yangliuqing New Year picture evaluation index
评价指标 | 内容说明 |
---|---|
色彩明度对比 | 较柔和的对比,明度较为平衡,采用温和的色调 |
画面构图 | 常采用对称布局,追求整体平衡和谐 |
人物形象塑造 | 细腻而传神,注重人物形象的细节描绘 |
色彩运用 | 偏向柔和、温和的色调,注重色彩的和谐与平衡 |
主题、题材 | 常以日常生活、自然景观、民间故事为主题 |
绘画技法 | 线条流畅、用笔细腻,强调细节描绘,注重传统技法的继承和发展 |
[1] | 郭全中, 张金熠. ChatGPT的技术特征与应用前景[J]. 中国传媒科技, 2023(1): 159-160. |
GUO Q Z, ZHANG J Y. Technical characteristics and application prospect of ChatGPT[J]. Media Science and Technology of China, 2023(1): 159-160 (in Chinese). | |
[2] | 王树义, 张庆薇. ChatGPT给科研工作者带来的机遇与挑战[J]. 图书馆论坛, 2023, 43(3): 109-118. |
WANG S Y, ZHANG Q W. ChatGPT's opportunities and challenges for researchers[J]. Library Tribune, 2023, 43(3): 109-118 (in Chinese). | |
[3] | 姜奇平. ChatGPT's大火下的冷思考[J]. 互联网周刊, 2023(4): 6. |
JIANG Q P. Cold thinking under ChatGPT fire[J]. China Internet Week, 2023(4): 6 (in Chinese). | |
[4] | 兰顺正. 在享受ChatGPT的便利时,也要看到其挑战[J]. 世界知识, 2023(6): 72-73. |
LAN S Z. While enjoying the convenience of ChatGPT, we should also see its challenges[J]. World Affairs, 2023(6): 72-73 (in Chinese). | |
[5] | 李砚祖. 传统工艺美术的当代性与地域性: 再谈传统工艺美术的保护与发展[J]. 南京艺术学院学报: 美术与设计版, 2008(1): 5-9. |
LI Y Z. Contemporary and regional characteristics of traditional arts and crafts—on the protection and development of traditional arts and Crafts[J]. Journal of Nanjing Arts Institute: Fine Arts & Design, 2008(1): 5-9 (in Chinese). | |
[6] | 李砚祖. 物质与非物质: 传统工艺美术的保护与发展[J]. 文艺研究, 2006(12): 106-117, 168. |
LI Y Z. Material and immaterial: protection and development of traditional Crafts and fine arts[J]. Literature & Art Studies, 2006(12): 106-117, 168 (in Chinese). | |
[7] | 李砚祖. 传统工艺美术的再发现[J]. 美术观察, 2007(7): 16-17. |
LI Y Z. Rediscovery of traditional arts and Crafts[J]. Art Observation, 2007(7): 16-17 (in Chinese). | |
[8] | 徐艺乙. 当下传统工艺美术的问题与思考[J]. 贵州社会科学, 2014(3): 29-33. |
XU Y Y. Problems and thinking of contemporary traditional arts and Crafts[J]. Guizhou Social Sciences, 2014(3): 29-33 (in Chinese). | |
[9] |
GU G, KO B, GO S, et al. Towards light-weight and real-time line segment detection[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(1): 726-734.
DOI URL |
[10] | 金峰. ChatGPT火爆“出圈”为AI发展添薪助力[J]. 通信世界, 2023(3): 5. |
JIN F. ChatGPT's hot “out of the circle” adds salary to AI development[J]. Communications World, 2023(3): 5 (in Chinese). | |
[11] | SINGER U, POLYAK A, HAYES T, et al. Make-A-Video: text-to-video generation without text-video data[EB/OL]. [2022-12-20]. https://arxiv.org/abs/2209.14792. |
[12] | HONG W Y, DING M, ZHENG W D, et al. CogVideo: large-scale pretraining for text-to-video generation via transformers[EB/OL]. [2022-12-13]. https://arxiv.org/abs/2205.15868. |
[13] | FU T J, LI L J, GAN Z, et al. VIOLET: end-to-end video-language transformers with masked visual-token modeling[EB/OL]. [2022-12-23]. https://arxiv.org/abs/2111.12681. |
[14] | VILLEGAS R, BABAEIZADEH M, KINDERMANS P J, et al. Phenaki: variable length video generation from open domain textual description[EB/OL]. [2022-12-13]. https://arxiv.org/abs/2210.02399. |
[15] | BROOKS T, HOLYNSKI A, EFROS A A. InstructPix2Pix: learning to follow image editing instructions[EB/OL]. [2022-12-23]. https://arxiv.org/abs/2211.09800. |
[16] | BAO H B, WANG W H, DONG L, et al. VLMo: unified vision-language pre-training with mixture-of-modality- experts[EB/OL]. [2022-12-23]. https://arxiv.org/abs/2111.02358. |
[17] | LI J N, LI D X, XIONG C M, et al. Blip-2: bootstrapping language-image pre-training with frozen image encoders and large language models. [2022-12-23]. https://arxiv.org/abs/2201.12086. |
[18] | RAMESH A, PAVLOV M, GOH G, et al. Zero-shot text-to-image generation[EB/OL]. [2022-12-13]. https://arxiv.org/abs/2102.12092. |
[19] | KADING C, RODNER E, FREYTAG A, et al. Fine-tuning deep neural networks in continuous learning scenarios[EB/OL]. [2022-12-13]. https://pub.inf-cv.uni-jena.de/pdf/Kaeding16_FDN.pdf. |
[20] | 朱若琳, 蓝善祯, 朱紫星. 视觉-语言多模态预训练模型前沿进展[J]. 中国传媒大学学报: 自然科学版, 2023, 30(1): 66-74. |
ZHU R L, LAN S Z, ZHU Z X. A survey on vision-language multimodality pre-training[J]. Journal of Communication University of China: Science and Technology, 2023, 30(1): 66-74 (in Chinese). |
[1] | WEN Jin-yu, FANG Mei-e. A review of computer-aided classification prediction of Parkinson's disease based on machine learning [J]. Journal of Graphics, 2023, 44(6): 1065-1079. |
[2] | DING Man, LI Peng-hui, ZHANG Yi-fei, MA Hong-kun. Current status and progress of research on the application of complex networks in the field of industrial design [J]. Journal of Graphics, 2023, 44(6): 1080-1090. |
[3] | CHENG Huan, WANG Shuo, LI Meng, QIN Lun-ming, ZHAO Fang. A review of neural radiance field for autonomous driving scene [J]. Journal of Graphics, 2023, 44(6): 1091-1103. |
[4] | WEI Chen-hao, YANG Rui, LIU Zhen-bing, LAN Ru-shi, SUN Xi-yan, LUO Xiao-nan. YOLOv8 with bi-level routing attention for road scene object detection [J]. Journal of Graphics, 2023, 44(6): 1104-1111. |
[5] | WANG Da-fu, WANG Jing, SHI Yu-kai, DENG Zhi-wen, JIA Zhi-yong. Research on image privacy detection based on deep transfer learning [J]. Journal of Graphics, 2023, 44(6): 1112-1120. |
[6] | DING Jian-chuan, XIAO Jin-tong, ZHAO Ke-xin, JIA Dong-qing, CUI Bing-de, YANG Xin. Spiking neural network-based navigation and obstacle avoidance algorithm for complex scenes [J]. Journal of Graphics, 2023, 44(6): 1121-1129. |
[7] | XIA Xiao-hua, LIU Xi-heng, YUE Peng-ju, ZOU Yi-qing, JIANG Li-jun. Detail-enhanced multi-exposure image fusion method [J]. Journal of Graphics, 2023, 44(6): 1130-1139. |
[8] | FAN Teng, YANG Hao, YIN Wen, ZHOU Dong-ming. Multi-scale view synthesis based on neural radiance field [J]. Journal of Graphics, 2023, 44(6): 1140-1148. |
[9] | LI Hong-xuan, ZHANG Song-yang, REN Bo. High-capacity clipped robust image steganography based on multilevel invertible neural networks [J]. Journal of Graphics, 2023, 44(6): 1149-1161. |
[10] | ZHOU Rui-chuang, TIAN Jin, YAN Feng-ting, ZHU Tian-xiao, ZHANG Yu-jin. Point cloud classification model incorporating external attention and graph convolution [J]. Journal of Graphics, 2023, 44(6): 1162-1172. |
[11] | HUANG Shao-nian, WEN Pei-ran, QUAN Qi, CHEN Rong-yuan. Future frame prediction based on multi-branch aggregation for lightweight video anomaly detection [J]. Journal of Graphics, 2023, 44(6): 1173-1182. |
[12] | ZHANG Li-yuan, ZHAO Hai-rong, HE Wei, TANG Xiong-feng. Knee cysts detection algorithm based on Mask R-CNN integrating global-local attention module [J]. Journal of Graphics, 2023, 44(6): 1183-1190. |
[13] | SHI Jia-hao, YAO Li. Video captioning based on semantic guidance [J]. Journal of Graphics, 2023, 44(6): 1191-1201. |
[14] | ZHANG Chi, ZHANG Xiao-juan, ZHAO Yang, YANG Fan. Palette-based semi-interactive low-light Thangka images enhancement [J]. Journal of Graphics, 2023, 44(6): 1202-1211. |
[15] | WANG Ji, WANG Sen, JIANG Zhi-wen, XIE Zhi-feng, LI Meng-tian. Zero-shot text-driven avatar generation based on depth-conditioned diffusion model [J]. Journal of Graphics, 2023, 44(6): 1218-1226. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||