Journal of Graphics ›› 2023, Vol. 44 ›› Issue (6): 1121-1129.DOI: 10.11996/JG.j.2095-302X.2023061121
Previous Articles Next Articles
DING Jian-chuan1,2(), XIAO Jin-tong3, ZHAO Ke-xin1, JIA Dong-qing1, CUI Bing-de1, YANG Xin2(
)
Received:
2023-06-27
Accepted:
2023-09-13
Online:
2023-12-31
Published:
2023-12-17
Contact:
YANG Xin (1984-), professor, Ph.D. His main research interests cover computer graphics and vision, robotics technology, etc. E-mail:About author:
DING Jian-chuan (1997-), master student. His main research interests cover computer vision and robotics technology.
E-mail:djc.dlut@gmail.com
Supported by:
CLC Number:
DING Jian-chuan, XIAO Jin-tong, ZHAO Ke-xin, JIA Dong-qing, CUI Bing-de, YANG Xin. Spiking neural network-based navigation and obstacle avoidance algorithm for complex scenes[J]. Journal of Graphics, 2023, 44(6): 1121-1129.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023061121
模型 | 变速动态场景 | 输入干扰 | 权重干扰 |
---|---|---|---|
ROS[ | 62.0 | 51.5 | - |
SAN[ | 79.5 | 70.0 | 52.6 |
BDETT[ | 84.0 | 78.4 | 77.0 |
Ours | 86.5 | 79.0 | 76.2 |
Table 1 Navigation obstacle avoidance success rate of different models in complex scenarios (%)
模型 | 变速动态场景 | 输入干扰 | 权重干扰 |
---|---|---|---|
ROS[ | 62.0 | 51.5 | - |
SAN[ | 79.5 | 70.0 | 52.6 |
BDETT[ | 84.0 | 78.4 | 77.0 |
Ours | 86.5 | 79.0 | 76.2 |
模型 | 变速动态 场景 | 输入 干扰 | 权重 干扰 | ||
---|---|---|---|---|---|
SAN[ | SAM | DTH | |||
√ | - | - | 79.5 | 70.0 | 51.6 |
√ | √ | - | 85.5 | 72.5 | 51.3 |
√ | - | √ | 83.0 | 79.0 | 76.0 |
√ | √ | √ | 86.5 | 79.0 | 76.2 |
Table 2 The ablation experiment of our algorithm in complex scenarios (%)
模型 | 变速动态 场景 | 输入 干扰 | 权重 干扰 | ||
---|---|---|---|---|---|
SAN[ | SAM | DTH | |||
√ | - | - | 79.5 | 70.0 | 51.6 |
√ | √ | - | 85.5 | 72.5 | 51.3 |
√ | - | √ | 83.0 | 79.0 | 76.0 |
√ | √ | √ | 86.5 | 79.0 | 76.2 |
[1] | 张巧荣, 崔明义. 基于改进Dijkstra算法的机器人路径规划方法[J]. 微计算机信息, 2007, 23(2): 286-287, 136. |
ZHANG Q R, CUI M Y. A dijkstra algorithm based approach for robot path planning[J]. Microcomputer Information, 2007, 23(2): 286-287, 136 (in Chinese). | |
[2] | 周宇杭, 王文明, 李泽彬, 等. 基于A星算法的移动机器人路径规划应用研究[J]. 电脑知识与技术, 2020, 16(13): 1-3, 10. |
ZHOU Y H, WANG W M, LI Z B, et al. Application research of mobile robot path planning based on A-star algorithm[J]. Computer Knowledge and Technology, 2020, 16(13): 1-3, 10 (in Chinese). | |
[3] | FOX D, BURGARD W, THRUN S. The dynamic window approach to collision avoidance[J]. IEEE Robotics & Automation Magazine, 1997, 4(1): 23-33. |
[4] | TAI L, LI S H, LIU M. A deep-network solution towards model-less obstacle avoidance[C]// 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE Press, 2016: 2759-2764. |
[5] |
PFEIFFER M, SHUKLA S, TURCHETTA M, et al. Reinforced imitation: sample efficient deep reinforcement learning for mapless navigation by leveraging prior demonstrations[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 4423-4430.
DOI URL |
[6] | LONG P X, FAN T X, LIAO X Y, et al. Towards optimally decentralized multi-robot collision avoidance via deep reinforcement learning[C]// 2018 IEEE International Conference on Robotics and Automation. New York: IEEE Press, 2018: 6252-6259. |
[7] | CHOI J, PARK K, KIM M, et al. Deep reinforcement learning of navigation in a complex and crowded environment with a limited field of view[C]// 2019 International Conference on Robotics and Automation. New York: IEEE Press, 2019: 5993-6000. |
[8] |
MILDE M B, BLUM H, DIETMÜLLER A, et al. Obstacle avoidance and target acquisition for robot navigation using a mixed signal analog/digital neuromorphic processing system[J]. Frontiers in Neurorobotics, 2017, 11: 28.
DOI PMID |
[9] | TANG G Z, KUMAR N, MICHMIZOS K P. Reinforcement co-learning of deep and spiking neural networks for energy-efficient mapless navigation with neuromorphic hardware[C]// 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE Press, 2020: 6090-6097. |
[10] |
WANG X Q, HOU Z G, LV F, et al. Mobile robots' modular navigation controller using spiking neural networks[J]. Neurocomputing, 2014, 134: 230-238.
DOI URL |
[11] | 张军军. 基于注意力机制卷积脉冲神经网络的目标识别方法[J]. 计算机与数字工程, 2022, 50(9): 1956-1961. |
ZHANG J J. Object recognition method based on attention mechanism convolutional spiking neural networks[J]. Computer & Digital Engineering, 2022, 50(9): 1956-1961 (in Chinese). | |
[12] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// European Conference on Computer Vision. Cham: Springer, 2018: 3-19. |
[13] | WANG Q L, WU B G, ZHU P F, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 11534-11542. |
[14] |
BEAR M F. Mechanism for a sliding synaptic modification threshold[J]. Neuron, 1995, 15(1): 1-4.
PMID |
[15] |
ZHANG W, LINDEN D J. The other side of the engram: experience-driven changes in neuronal intrinsic excitability[J]. Nature Reviews Neuroscience, 2003, 4(11): 885-900.
DOI PMID |
[16] | DING J C, DONG B, HEIDE F, et al. Biologically inspired dynamic thresholds for spiking neural networks[EB/OL]. [2022-12-20]. https://www.zhuanzhi.ai/paper/75c640a8c462ef30d06c2ff1e6525f35. |
[17] |
WU Y J, DENG L, LI G Q, et al. Spatio-temporal backpropagation for training high-performance spiking neural networks[J]. Frontiers in Neuroscience, 2018, 12: 331-342.
DOI PMID |
[18] |
DESAI N S, RUTHERFORD L C, TURRIGIANO G G. Plasticity in the intrinsic excitability of cortical pyramidal neurons[J]. Nature Neuroscience, 1999, 2(6): 515-520.
PMID |
[19] |
HIGGS M H, SPAIN W J. Kv1 channels control spike threshold dynamics and spike timing in cortical pyramidal neurones[J]. The Journal of Physiology, 2011, 589(Pt 21): 5125-5142.
DOI PMID |
[20] | FLORENSA C, HELD D, WULFMEIER M, et al. Reverse curriculum generation for reinforcement learning[EB/OL]. [2022-12-20]. https://arxiv.org/abs/1707.05300. |
[21] | GUIMARÃES R L, DE OLIVEIRA A S, FABRO J A, et al. ROS navigation: concepts and tutorial[M]// Robot Operating System (ROS). Cham: Springer, 2016: 121-160. |
[22] |
PAGKALOS M, CHAVLIS S, POIRAZI P. Introducing the Dendrify framework for incorporating dendrites to spiking neural networks[J]. Nature Communications, 2023, 14(1): 131.
DOI PMID |
[1] |
GUO Zongyang, LIU Lidong, JIANG Donghua, LIU Zixiang, ZHU Shukang, CHEN Jinghua.
Human action recognition algorithm based on semantics guided neural networks
[J]. Journal of Graphics, 2024, 45(1): 26-34.
|
[2] |
ZHAI Yongjie, ZHAO Xiaoyu, WANG Luyao, WANG Yaru, SONG Xiaoke, ZHU Haoshuo.
IDD-YOLOv7: a lightweight method for multiple defect detection of insulators in transmission lines
[J]. Journal of Graphics, 2024, 45(1): 90-101.
|
[3] |
GU Tianjun, XIONG Suya, LIN Xiao.
Diversified generation of theatrical masks based on SASGAN
[J]. Journal of Graphics, 2024, 45(1): 102-111.
|
[4] |
CUI Kebin, JIAO Jingyi.
Steel surface defect detection algorithm based on MCB-FAH-YOLOv8
[J]. Journal of Graphics, 2024, 45(1): 112-125.
|
[5] | WEI Chen-hao, YANG Rui, LIU Zhen-bing, LAN Ru-shi, SUN Xi-yan, LUO Xiao-nan. YOLOv8 with bi-level routing attention for road scene object detection [J]. Journal of Graphics, 2023, 44(6): 1104-1111. |
[6] | ZHANG Li-yuan, ZHAO Hai-rong, HE Wei, TANG Xiong-feng. Knee cysts detection algorithm based on Mask R-CNN integrating global-local attention module [J]. Journal of Graphics, 2023, 44(6): 1183-1190. |
[7] | ZHANG Chi, ZHANG Xiao-juan, ZHAO Yang, YANG Fan. Palette-based semi-interactive low-light Thangka images enhancement [J]. Journal of Graphics, 2023, 44(6): 1202-1211. |
[8] | YANG Chen-cheng, DONG Xiu-cheng, HOU Bing, ZHANG Dang-cheng, XIANG Xian-ming, FENG Qi-ming. Reference based transformer texture migrates depth images super resolution reconstruction [J]. Journal of Graphics, 2023, 44(5): 861-867. |
[9] | SONG Huan-sheng, WEN Ya, SUN Shi-jie, SONG Xiang-yu, ZHANG Chao-yang, LI Xu. Tunnel fire detection based on improved student-teacher network [J]. Journal of Graphics, 2023, 44(5): 978-987. |
[10] | LI Li-xia, WANG Xin, WANG Jun, ZHANG You-yuan. Small object detection algorithm in UAV image based on feature fusion and attention mechanism [J]. Journal of Graphics, 2023, 44(4): 658-666. |
[11] | LI Xin, PU Yuan-yuan, ZHAO Zheng-peng, XU Dan, QIAN Wen-hua. Content semantics and style features match consistent artistic style transfer [J]. Journal of Graphics, 2023, 44(4): 699-709. |
[12] | YU Wei-qun, LIU Jia-tao, ZHANG Ya-ping. Monocular depth estimation based on Laplacian pyramid with attention fusion [J]. Journal of Graphics, 2023, 44(4): 728-738. |
[13] | HU Xin, ZHOU Yun-qiang, XIAO Jian, YANG Jie. Surface defect detection of threaded steel based on improved YOLOv5 [J]. Journal of Graphics, 2023, 44(3): 427-437. |
[14] | HAO Peng-fei, LIU Li-qun, GU Ren-yuan. YOLO-RD-Apple orchard heterogenous image obscured fruit detection model [J]. Journal of Graphics, 2023, 44(3): 456-464. |
[15] | LI Yu, YAN Tian-tian, ZHOU Dong-sheng, WEI Xiao-peng. Natural scene text detection based on attention mechanism and deep multi-scale feature fusion [J]. Journal of Graphics, 2023, 44(3): 473-481. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||