Journal of Graphics ›› 2025, Vol. 46 ›› Issue (1): 1-12.DOI: 10.11996/JG.j.2095-302X.2025010001
• Image Processing and Computer Vision • Next Articles
ZHAO Zhenbing1,2,3(), HAN Yu1, TANG Chenkang1
Received:
2024-07-23
Accepted:
2024-10-07
Online:
2025-02-28
Published:
2025-02-14
About author:
First author contact:ZHAO Zhenbing (1979-), professor, Ph.D. His main research interests cover computer vision technology in electric power system, etc. E-mail:zhaozhenbing@ncepu.edu.cn
Supported by:
CLC Number:
ZHAO Zhenbing, HAN Yu, TANG Chenkang. Cascade detection method for insulator defects in distribution lines based on improved YOLOv8[J]. Journal of Graphics, 2025, 46(1): 1-12.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025010001
Fig. 1 Examples from the insulator and defect dataset of distribution lines ((a) Aerial original image of UAV; (b) Insulator damage defect; (c) Insulator pollution defect)
名称 | 型号 |
---|---|
操作系统 | Ubuntu16.04.1 |
CPU | E5-2620 v4 |
GPU | TITAN Xp |
CUDA | 10.2 |
cuDNN | 7.6.5 |
Python | 3.8 |
深度学习框架 | PyTorch 1.12.0 |
Table 1 Experimental environment
名称 | 型号 |
---|---|
操作系统 | Ubuntu16.04.1 |
CPU | E5-2620 v4 |
GPU | TITAN Xp |
CUDA | 10.2 |
cuDNN | 7.6.5 |
Python | 3.8 |
深度学习框架 | PyTorch 1.12.0 |
目标类别 | 绝缘子数据集 | 绝缘子缺陷数据集 | ||||
---|---|---|---|---|---|---|
悬式绝缘子 | 柱式绝缘子 | 针式绝缘子 | 损伤绝缘子 | 污秽绝缘子 | 正常绝缘子 | |
样本数量/个 | 3 831 | 5 333 | 2 489 | 430 | 1 160 | 463 |
标签名称 | x_jyz | zh_jyz | zs_jyz | sunshang | wuhui | zq |
Table 2 Dataset details
目标类别 | 绝缘子数据集 | 绝缘子缺陷数据集 | ||||
---|---|---|---|---|---|---|
悬式绝缘子 | 柱式绝缘子 | 针式绝缘子 | 损伤绝缘子 | 污秽绝缘子 | 正常绝缘子 | |
样本数量/个 | 3 831 | 5 333 | 2 489 | 430 | 1 160 | 463 |
标签名称 | x_jyz | zh_jyz | zs_jyz | sunshang | wuhui | zq |
主干网络 | P/% | R/% | mAP50/% | mAP50:95/% | Parameters/M | GFLOPs/% |
---|---|---|---|---|---|---|
ConvNeXt V2[ | 69.8 | 67.2 | 75.2 | 67.1 | 5.7 | 14.1 |
EfficientViT[ | 53.3 | 67.1 | 61.4 | 48.7 | 4.0 | 9.4 |
FasterNet[ | 59.4 | 70.0 | 65.6 | 53.7 | 4.2 | 10.7 |
Timm | 61.5 | 71.5 | 68.7 | 58.7 | 13.3 | 35.1 |
VanillaNet[ | 61.8 | 66.6 | 69.6 | 58.3 | 23.9 | 96.7 |
LSKNet[ | 53.1 | 74.3 | 67.6 | 56.5 | 5.9 | 19.7 |
Table 3 The comparison experiment results of backbone network
主干网络 | P/% | R/% | mAP50/% | mAP50:95/% | Parameters/M | GFLOPs/% |
---|---|---|---|---|---|---|
ConvNeXt V2[ | 69.8 | 67.2 | 75.2 | 67.1 | 5.7 | 14.1 |
EfficientViT[ | 53.3 | 67.1 | 61.4 | 48.7 | 4.0 | 9.4 |
FasterNet[ | 59.4 | 70.0 | 65.6 | 53.7 | 4.2 | 10.7 |
Timm | 61.5 | 71.5 | 68.7 | 58.7 | 13.3 | 35.1 |
VanillaNet[ | 61.8 | 66.6 | 69.6 | 58.3 | 23.9 | 96.7 |
LSKNet[ | 53.1 | 74.3 | 67.6 | 56.5 | 5.9 | 19.7 |
模块 | P/% | R/% | AP/% | mAP50/% | mAP50:95/% | Parameters/M | GFLOPs/% | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | 损伤 | 污秽 | 正常 | ||||||
√ | - | - | - | 51.9 | 67.3 | 48.7 | 80.0 | 56.7 | 61.8 | 52.1 | 3.0 | 8.1 |
√ | √ | - | - | 69.8 | 67.2 | 68.8 | 87.1 | 69.7 | 75.2 | 67.1 | 5.7 | 14.1 |
√ | √ | √ | - | 69.8 | 70.0 | 72.3 | 87.3 | 69.6 | 76.4 | 67.2 | 6.3 | 14.1 |
√ | √ | - | √ | 70.2 | 68.0 | 70.4 | 87.8 | 69.2 | 75.8 | 66.7 | 5.6 | 14.1 |
√ | √ | √ | √ | 70.3 | 75.1 | 75.2 | 88.2 | 73.9 | 79.1 | 69.8 | 6.3 | 14.1 |
Table 4 The ablation experimental result of the model structure
模块 | P/% | R/% | AP/% | mAP50/% | mAP50:95/% | Parameters/M | GFLOPs/% | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | 损伤 | 污秽 | 正常 | ||||||
√ | - | - | - | 51.9 | 67.3 | 48.7 | 80.0 | 56.7 | 61.8 | 52.1 | 3.0 | 8.1 |
√ | √ | - | - | 69.8 | 67.2 | 68.8 | 87.1 | 69.7 | 75.2 | 67.1 | 5.7 | 14.1 |
√ | √ | √ | - | 69.8 | 70.0 | 72.3 | 87.3 | 69.6 | 76.4 | 67.2 | 6.3 | 14.1 |
√ | √ | - | √ | 70.2 | 68.0 | 70.4 | 87.8 | 69.2 | 75.8 | 66.7 | 5.6 | 14.1 |
√ | √ | √ | √ | 70.3 | 75.1 | 75.2 | 88.2 | 73.9 | 79.1 | 69.8 | 6.3 | 14.1 |
方法 | P/% | R/% | AP/% | mAP50/% | mAP50:95/% | Parameters/M | GFLOPs/% | ||
---|---|---|---|---|---|---|---|---|---|
损伤 | 污秽 | 正常 | |||||||
YOLOv8n | 51.9 | 67.3 | 48.7 | 80.0 | 56.7 | 61.8 | 52.1 | 3.0 | 8.1 |
YOLOv7-tiny | 40.7 | 70.9 | 32.3 | 65.9 | 51.6 | 49.9 | 30.4 | 6.0 | 13.0 |
YOLOv6n | 50.8 | 61.6 | 41.4 | 72.6 | 50.4 | 54.8 | 39.1 | 4.6 | 11.3 |
YOLOv5n | 51.7 | 63.9 | 46.4 | 73.2 | 54.9 | 58.2 | 38.8 | 1.7 | 4.1 |
Faster R-CNN | - | - | 43.6 | 60.7 | 47.8 | 50.7 | - | - | - |
YOLOv9-c[ | 61.7 | 73.6 | 70.4 | 85.4 | 63.4 | 73.1 | 64.7 | 50.7 | 236.6 |
Ours | 70.3 | 75.1 | 75.2 | 88.2 | 73.9 | 79.1 | 69.8 | 6.3 | 14.1 |
Table 5 The comparison of detection model performances
方法 | P/% | R/% | AP/% | mAP50/% | mAP50:95/% | Parameters/M | GFLOPs/% | ||
---|---|---|---|---|---|---|---|---|---|
损伤 | 污秽 | 正常 | |||||||
YOLOv8n | 51.9 | 67.3 | 48.7 | 80.0 | 56.7 | 61.8 | 52.1 | 3.0 | 8.1 |
YOLOv7-tiny | 40.7 | 70.9 | 32.3 | 65.9 | 51.6 | 49.9 | 30.4 | 6.0 | 13.0 |
YOLOv6n | 50.8 | 61.6 | 41.4 | 72.6 | 50.4 | 54.8 | 39.1 | 4.6 | 11.3 |
YOLOv5n | 51.7 | 63.9 | 46.4 | 73.2 | 54.9 | 58.2 | 38.8 | 1.7 | 4.1 |
Faster R-CNN | - | - | 43.6 | 60.7 | 47.8 | 50.7 | - | - | - |
YOLOv9-c[ | 61.7 | 73.6 | 70.4 | 85.4 | 63.4 | 73.1 | 64.7 | 50.7 | 236.6 |
Ours | 70.3 | 75.1 | 75.2 | 88.2 | 73.9 | 79.1 | 69.8 | 6.3 | 14.1 |
Fig. 7 Loss curve char t ((a) Regression loss curve of training set; (b) Distribution focal loss curve of training set; (c) Classification loss curve of training set; (d) Regression loss curve of validation set; (e) Distribution focal loss curve of validation set; (f) Classification loss curve of validation set)
[1] | 盛戈皞, 钱勇, 罗林根, 等. 面向新型电力系统的电力设备运行维护关键技术及其应用展望[J]. 高电压技术, 2021, 47(9): 3072-3084. |
SHENG G H, QIAN Y, LUO L G, et al. Key technologies and application prospects for operation and maintenance of power equipment in new type power system[J]. High Voltage Engineering, 2021, 47(9): 3072-3084 (in Chinese). | |
[2] | 林聚财, 韩军, 陈舫明, 等. 基于彩色图像的玻璃绝缘子缺陷诊断[J]. 电网技术, 2011, 35(1): 127-133. |
LIN J C, HAN J, CHEN F M, et al. Defects detection of glass insulator based on color image[J]. Power System Technology, 2011, 35(1): 127-133 (in Chinese). | |
[3] | 张少平, 杨忠, 黄宵宁, 等. 航拍图像中玻璃绝缘子自爆缺陷的检测及定位[J]. 太赫兹科学与电子信息学报, 2013, 11(4): 609-613. |
ZHANG S P, YANG Z, HUANG X N, et al. Defects detection and positioning for glass insulator from aerial images[J]. Journal of Terahertz Science and Electronic Information Technology, 2013, 11(4): 609-613 (in Chinese). | |
[4] | 梅欣, 陈江, 王书友. 基于形态学的复合绝缘子憎水性图像检测技术[J]. 高电压技术, 2013, 39(12): 3088-3094. |
MEI X, CHEN J, WANG S Y. Composite insulator hydrophobicity image detection method based on morphology[J]. High Voltage Engineering, 2013, 39(12): 3088-3094 (in Chinese). | |
[5] | NI L Y, MA Y J, LIN Q, et al. Research on insulator defect detection method based on image processing and watershed algorithm[C]// 2021 International Conference on Advanced Electrical Equipment and Reliable Operation. New York: IEEE Press, 2021: 1-6. |
[6] | 韩俊, 袁小平, 王准, 等. 基于YOLOv5s的无人机密集小目标检测算法[J]. 浙江大学学报(工学版), 2023, 57(6): 1224-1233. |
HAN J, YUAN X P, WANG Z, et al. UAV dense small target detection algorithm based on YOLOv5s[J]. Journal of Zhejiang University (Engineering Science), 2023, 57(6): 1224-1233 (in Chinese). | |
[7] | SHARMA K U, THAKUR N V. A review and an approach for object detection in images[J]. International Journal of Computational Vision and Robotics, 2017, 7(1/2): 196-237. |
[8] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]// The 14th European Conference on Computer Vision-ECCV 2016. Cham: Springer, 2016: 21-37. |
[9] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[10] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788. |
[11] | 朱泓宇, 程换新, 骆晓玲. 改进YOLOv8网络在绝缘子缺陷检测中的应用[J]. 水电能源科学, 2024, 42(5): 183-187. |
ZHU H Y, CHENG H X, LUO X L. Application of improved YOLOv8 network in insulator defect detection[J]. Water Resources and Power, 2024, 42(5): 183-187 (in Chinese). | |
[12] | 王思, 熊惠敏, 胡蕾, 等. 基于改进YOLOv7的输电线路绝缘子设备及其缺陷检测算法[J]. 江西电力, 2024, 48(1): 1-6, 20. |
WANG S, XIONG H M, HU L, et al. Detection algorithm for transmission line insulator equipment and its defects based on improved YOLOv7[J]. Jiangxi Electric Power, 2024, 48(1): 1-6, 20 (in Chinese). | |
[13] | 卞建鹏, 朱泽明, 陈璇, 等. 基于Res-CapsNet与改进YOLOv4的绝缘子破损识别与定位[J/OL]. (2024-04-01) [2024-06-20]. http://kns.cnki.net/kcms/detail/61.1129.TM.20240330.1344.006.html. |
BIAN J P, ZHU Z M, CHEN X, et al. Insulator damage identification and location based on Res-CapsNet and improved YOLOv4[J/OL]. (2024-04-01) [2024-09-20]. http://kns.cnki.net/kcms/detail/61.1129.TM.20240330.1344.006.html (in Chinese). | |
[14] | WANG S Q, LIU Y F, QING Y, et al. Detection of insulator defects with improved ResNeSt and region proposal network[J]. IEEE Access, 2020, 8: 184841-184850. |
[15] | 曾业战, 段志超, 郭彦东, 等. 基于ScSGB-RCNN网络的输电线路航拍绝缘子目标检测[J]. 电瓷避雷器, 2024(1): 161-169. |
ZENG Y Z, DUAN Z C, GUO Y D, et al. Target detection for aerial imaging insulators of transmission lines based on ScSGB-RCNN network[J]. Insulators and Surge Arresters, 2024(1): 161-169 (in Chinese). | |
[16] | 翟永杰, 杨旭, 赵振兵, 等. 融合共现推理的Faster R-CNN输电线路金具检测[J]. 智能系统学报, 2021, 16(2): 237-246. |
ZHAI Y J, YANG X, ZHAO Z B, et al. Integrating co-occurrence reasoning for Faster R-CNN transmission line fitting detection[J]. CAAI Transactions on Intelligent Systems, 2021, 16(2): 237-246 (in Chinese). | |
[17] | 赵振兵, 江爱雪, 戚银城, 等. 嵌入遮挡关系模块的SSD模型的输电线路图像金具检测[J]. 智能系统学报, 2020, 15(4): 656-662. |
ZHAO Z B, JIANG A X, QI Y C, et al. Fittings detection in transmission line images with SSD model embedded occlusion relation module[J]. CAAI Transactions on Intelligent Systems, 2020, 15(4): 656-662 (in Chinese). | |
[18] |
李刚, 蔡泽浩, 孙华勋, 等. 基于改进YOLOv8与语义知识融合的金具缺陷检测方法研究[J]. 图学学报, 2024, 45(5): 979-986.
DOI |
LI G, CAI Z H, SUN H X, et al. Research on defect detection of transmission line fittings based on improved YOLOv8 and semantic knowledge fusion[J]. Journal of Graphics, 2024, 45(5): 979-986 (in Chinese).
DOI |
|
[19] |
翟永杰, 赵晓瑜, 王璐瑶, 等. IDD-YOLOv7: 一种用于输电线路绝缘子多缺陷的轻量化检测方法[J]. 图学学报, 2024, 45(1): 90-101.
DOI |
ZHAI Y J, ZHAO X Y, WANG L Y, et al. IDD-YOLOv7: a lightweight method for multiple defect detection of insulators in transmission lines[J]. Journal of Graphics, 2024, 45(1): 90-101 (in Chinese).
DOI |
|
[20] | 曾业战, 郭彦东, 段志超, 等. 基于SEPyconv-DETR的无人机航拍绝缘子检测算法[J]. 电工技术, 2024(3): 27-31. |
ZENG Y Z, GUO Y D, DUAN Z C, et al. SEPyconv-DETR- based Drone-assisted insulator detection algorithm[J]. Electric Engineering, 2024(3): 27-31 (in Chinese). | |
[21] | 杨永娇, 唐亮亮, 郑勇. 改进全卷积网络优化绝缘子缺陷检测[J]. 机械设计与制造, 2021(3): 177-180. |
YANG Y J, TANG L L, ZHENG Y. Insulator defect detection optimized by improved full convolution network[J]. Machinery Design & Manufacture, 2021(3): 177-180 (in Chinese). | |
[22] | ZHANG X T, ZHANG Y Y, LIU J F, et al. InsuDet: a fault detection method for insulators of overhead transmission lines using convolutional neural networks[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 5018512. |
[23] | 王道累, 孙嘉珺, 张天宇, 等. 基于改进生成对抗网络的玻璃绝缘子自爆缺陷检测方法[J]. 高电压技术, 2022, 48(3): 1096-1103. |
WANG D L, SUN J J, ZHANG T Y, et al. Self-explosion defect detection method of glass insulator based on improved generative adversarial network[J]. High Voltage Engineering, 2022, 48(3): 1096-1103 (in Chinese). | |
[24] | 颜宏文, 万俊杰, 潘志敏, 等. 基于改进YOLOv5-LITE轻量级的配电组件缺陷识别[J]. 高电压技术, 2024, 50(5): 1855-1864. |
YAN H W, WAN J J, PAN Z M, et al. Defect identification of distribution components based on improved YOLOv5-LITE lightweight[J]. High Voltage Engineering, 2024, 50(5): 1855-1864 (in Chinese). | |
[25] | 吕继军, 陈涛, 李梦琪, 等. 基于计算机视觉的配电线路绝缘子合格检测[J]. 光源与照明, 2023(8): 108-110. |
LV J J, CHEN T, LI M Q, et al. Qualification detection of distribution line insulators based on computer vision[J]. Light & Lighting, 2023(8): 108-110 (in Chinese). | |
[26] | 李利荣, 张云良, 陈鹏, 等. 基于上下文信息增强与特征细化的绝缘子破损检测方法[J]. 高电压技术, 2023, 49(8): 3405-3414. |
LI L R, ZHANG Y L, CHEN P, et al. Detection method of insulator breakage based on context augmentation and feature refinement[J]. High Voltage Engineering, 2023, 49(8): 3405-3414 (in Chinese). | |
[27] | LU Z X, LI Y, SHUANG F, et al. InsDef: few-shot learning-based insulator defect detection algorithm with a dual-guide attention mechanism and multiple label consistency constraints[J]. IEEE Transactions on Power Delivery, 2023, 38(6): 4166-4178. |
[28] | WOO S, DEBNATH S, HU R H, et al. ConvNeXt V2: co-designing and scaling ConvNets with masked autoencoders[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 16133-16142. |
[29] | ZHANG S F, CHI C, YAO Y Q, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 9756-9765. |
[30] | ZHANG H, ZHANG S J. Shape-IoU: more accurate metric considering bounding box shape and scale[EB/OL]. [2024-05-20]. https://arxiv.org/abs/2312.17663. |
[31] | LI C Y, LI L L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. [2024-05-20]. https://arxiv.org/abs/2209.02976. |
[32] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 7464-7475. |
[33] | WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[EB/OL]. [2024-06-20]. https://doi.org/10.48550/arXiv.2402.13616. |
[34] | LIU X Y, PENG H W, ZHENG N X, et al. EfficientViT: memory efficient vision transformer with cascaded group attention[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 14420-14430. |
[35] | CHEN J R, KAO S H, HE H, et al. Run, don't walk: chasing higher FLOPS for faster neural networks[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 12021-12031. |
[36] | CHEN H T, WANG Y H, GUO J Y, et al. VanillaNet: the power of minimalism in deep learning[EB/OL]. [2024-06-20]. https://proceedings.neurips.cc/paper_files/paper/2023/file/16336d94a5ffca8de019087ab7fe403f-Supplemental-Conference.pdf. |
[37] | LI Y X, LI X, DAI Y, et al. LSKNet: a foundation lightweight backbone for remote sensing[EB/OL]. [2024-05-20]. https://link.springer.com/article/10.1007/s11263-024-02247-9. |
[1] | WANG Zhidong, CHEN Chenyang, LIU Xiaoming. The defect detection method for communication optical cables based on lightweight improved YOLOv8 [J]. Journal of Graphics, 2025, 46(1): 28-34. |
[2] | LI Zhenfeng, FU Shichen, XU Le, MENG Bo, ZHANG Xin, QING Jianjun. Research on gangue target detection algorithm based on MBI-YOLOv8 [J]. Journal of Graphics, 2024, 45(6): 1301-1312. |
[3] | YAN Jianhong, RAN Tongxiao. Lightweight UAV image target detection algorithm based on YOLOv8 [J]. Journal of Graphics, 2024, 45(6): 1328-1337. |
[4] | HU Fengkuo, YE Lan, TAN Xianfeng, ZHANG Qinzhan, HU Zhixin, FANG Qing, WANG Lei, MAN Xiaofeng. A refined YOLOv8-based algorithm for lightweight pavement disease detection [J]. Journal of Graphics, 2024, 45(5): 892-900. |
[5] | WANG Yaru, FENG Lilong, SONG Xiaoke, QU Zhuo, YANG Ke, WANG Qianming, ZHAI Yongjie. TFD-YOLOv8: a transmission line foreign object detection method [J]. Journal of Graphics, 2024, 45(5): 901-912. |
[6] | LIU Yiyan, HAO Tingnan, HE Chen, CHANG Yingjie. Photovoltaic cell surface defect detection based on DBBR-YOLO [J]. Journal of Graphics, 2024, 45(5): 913-921. |
[7] | LI Gang, CAI Zehao, SUN Huaxun, ZHAO Zhenbing. Research on defect detection of transmission line fittings based on improved YOLOv8 and semantic knowledge fusion [J]. Journal of Graphics, 2024, 45(5): 979-986. |
[8] | HU Xin, CHANG Yashu, QIN Hao, XIAO Jian, CHENG Hongliang. Binocular ranging method based on improved YOLOv8 and GMM image point set matching [J]. Journal of Graphics, 2024, 45(4): 714-725. |
[9] | NIU Weihua, GUO Xun. Rotating target detection algorithm in ship remote sensing images based on YOLOv8 [J]. Journal of Graphics, 2024, 45(4): 726-735. |
[10] | ZENG Zhichao, XU Yue, WANG Jingyu, YE Yuanlong, HUANG Zhikai, WANG Huan. A water surface target detection algorithm based on SOE-YOLO lightweight network [J]. Journal of Graphics, 2024, 45(4): 736-744. |
[11] | WU Bing, TIAN Ying. Research on multi-scale road damage detection algorithm based on attention mechanism [J]. Journal of Graphics, 2024, 45(4): 770-778. |
[12] | ZHU Qiangjun, HU Bin, WANG Huilan, WANG Yang. Detection of traffic signs based on lightweight YOLOv8s [J]. Journal of Graphics, 2024, 45(3): 422-432. |
[13] | ZHAI Yongjie, ZHAO Xiaoyu, WANG Luyao, WANG Yaru, SONG Xiaoke, ZHU Haoshuo. IDD-YOLOv7: a lightweight method for multiple defect detection of insulators in transmission lines [J]. Journal of Graphics, 2024, 45(1): 90-101. |
[14] | CUI Kebin, JIAO Jingyi. Steel surface defect detection algorithm based on MCB-FAH-YOLOv8 [J]. Journal of Graphics, 2024, 45(1): 112-125. |
[15] | WANG Da-fu, WANG Jing, SHI Yu-kai, DENG Zhi-wen, JIA Zhi-yong. Research on image privacy detection based on deep transfer learning [J]. Journal of Graphics, 2023, 44(6): 1112-1120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||