Journal of Graphics ›› 2025, Vol. 46 ›› Issue (3): 588-601.DOI: 10.11996/JG.j.2095-302X.2025030588
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
MA Yang1(), HUANG Lujie1, PENG Weilong2, WU Zhize3, TANG Keke1(
), FANG Meie2
Received:
2024-09-30
Accepted:
2024-12-17
Online:
2025-06-30
Published:
2025-06-13
Contact:
TANG Keke
About author:
First author contact:MA Yang (1998-), master student. His main research interest covers computer vision security. E-mail:gzhumayang@gmail.com
Supported by:
CLC Number:
MA Yang, HUANG Lujie, PENG Weilong, WU Zhize, TANG Keke, FANG Meie. CLIP-based semantic offset transferable attacks on 3D point clouds[J]. Journal of Graphics, 2025, 46(3): 588-601.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025030588
受害者模型 | 攻击方法 | ModelNet40 | ShapeNet Part | ||||||
---|---|---|---|---|---|---|---|---|---|
PointNet | PointNet++ | PointConv | DGCNN | PointNet | PointNet++ | PointConv | DGCNN | ||
PointNet | 3D-Adv | 100.00 | 5.01 | 2.06 | 4.22 | 100.00 | 4.12 | 1.33 | 3.18 |
AdvPC | 100.00 | 30.40 | 13.60 | 14.80 | 100.00 | 29.80 | 13.10 | 14.20 | |
AOF | 99.90 | 57.20 | 36.30 | 29.40 | 100.00 | 53.50 | 33.20 | 25.50 | |
Mani-ADV | 100.00 | 65.30 | 40.10 | 30.60 | 100.00 | 63.40 | 35.80 | 26.90 | |
本文 | 100.00 | 67.40 | 43.20 | 35.10 | 100.00 | 64.60 | 40.80 | 30.50 | |
PointNet++ | 3D-Adv | 1.54 | 100.00 | 4.77 | 6.49 | 1.28 | 100.00 | 3.41 | 5.22 |
AdvPC | 4.81 | 100.00 | 28.20 | 18.90 | 2.65 | 100.00 | 23.50 | 16.90 | |
AOF | 7.89 | 99.60 | 48.40 | 33.30 | 6.62 | 100.00 | 45.20 | 29.30 | |
Mani-ADV | 17.70 | 100.00 | 59.30 | 75.10 | 15.40 | 100.00 | 57.90 | 74.80 | |
本文 | 19.80 | 100.00 | 63.40 | 80.50 | 17.70 | 100.00 | 60.20 | 77.30 | |
PointConv | 3D-Adv | 1.45 | 6.58 | 100.00 | 3.02 | 1.32 | 5.35 | 100.00 | 2.33 |
AdvPC | 5.13 | 34.20 | 100.00 | 18.00 | 4.67 | 33.20 | 100.00 | 17.50 | |
AOF | 6.85 | 50.20 | 99.90 | 25.50 | 6.54 | 49.30 | 100.00 | 25.30 | |
Mani-ADV | 16.90 | 57.50 | 100.00 | 29.40 | 14.30 | 50.20 | 100.00 | 26.40 | |
本文 | 19.20 | 61.90 | 100.00 | 34.10 | 16.70 | 55.60 | 100.00 | 30.20 | |
DGCNN | 3D-Adv | 0.91 | 6.63 | 5.21 | 100.00 | 0.72 | 6.54 | 5.02 | 100.00 |
AdvPC | 7.44 | 60.00 | 44.50 | 93.70 | 7.03 | 53.50 | 43.30 | 90.30 | |
AOF | 14.00 | 69.60 | 58.40 | 96.70 | 12.60 | 66.20 | 55.70 | 93.70 | |
Mani-ADV | 48.30 | 71.60 | 60.20 | 100.00 | 21.00 | 68.60 | 57.90 | 100.00 | |
本文 | 55.20 | 77.90 | 62.80 | 98.80 | 50.40 | 73.80 | 59.10 | 100.00 |
Table 1 Comparison of the effectiveness of different algorithms for transferable attacks on ModelNet40 and ShapeNet/%
受害者模型 | 攻击方法 | ModelNet40 | ShapeNet Part | ||||||
---|---|---|---|---|---|---|---|---|---|
PointNet | PointNet++ | PointConv | DGCNN | PointNet | PointNet++ | PointConv | DGCNN | ||
PointNet | 3D-Adv | 100.00 | 5.01 | 2.06 | 4.22 | 100.00 | 4.12 | 1.33 | 3.18 |
AdvPC | 100.00 | 30.40 | 13.60 | 14.80 | 100.00 | 29.80 | 13.10 | 14.20 | |
AOF | 99.90 | 57.20 | 36.30 | 29.40 | 100.00 | 53.50 | 33.20 | 25.50 | |
Mani-ADV | 100.00 | 65.30 | 40.10 | 30.60 | 100.00 | 63.40 | 35.80 | 26.90 | |
本文 | 100.00 | 67.40 | 43.20 | 35.10 | 100.00 | 64.60 | 40.80 | 30.50 | |
PointNet++ | 3D-Adv | 1.54 | 100.00 | 4.77 | 6.49 | 1.28 | 100.00 | 3.41 | 5.22 |
AdvPC | 4.81 | 100.00 | 28.20 | 18.90 | 2.65 | 100.00 | 23.50 | 16.90 | |
AOF | 7.89 | 99.60 | 48.40 | 33.30 | 6.62 | 100.00 | 45.20 | 29.30 | |
Mani-ADV | 17.70 | 100.00 | 59.30 | 75.10 | 15.40 | 100.00 | 57.90 | 74.80 | |
本文 | 19.80 | 100.00 | 63.40 | 80.50 | 17.70 | 100.00 | 60.20 | 77.30 | |
PointConv | 3D-Adv | 1.45 | 6.58 | 100.00 | 3.02 | 1.32 | 5.35 | 100.00 | 2.33 |
AdvPC | 5.13 | 34.20 | 100.00 | 18.00 | 4.67 | 33.20 | 100.00 | 17.50 | |
AOF | 6.85 | 50.20 | 99.90 | 25.50 | 6.54 | 49.30 | 100.00 | 25.30 | |
Mani-ADV | 16.90 | 57.50 | 100.00 | 29.40 | 14.30 | 50.20 | 100.00 | 26.40 | |
本文 | 19.20 | 61.90 | 100.00 | 34.10 | 16.70 | 55.60 | 100.00 | 30.20 | |
DGCNN | 3D-Adv | 0.91 | 6.63 | 5.21 | 100.00 | 0.72 | 6.54 | 5.02 | 100.00 |
AdvPC | 7.44 | 60.00 | 44.50 | 93.70 | 7.03 | 53.50 | 43.30 | 90.30 | |
AOF | 14.00 | 69.60 | 58.40 | 96.70 | 12.60 | 66.20 | 55.70 | 93.70 | |
Mani-ADV | 48.30 | 71.60 | 60.20 | 100.00 | 21.00 | 68.60 | 57.90 | 100.00 | |
本文 | 55.20 | 77.90 | 62.80 | 98.80 | 50.40 | 73.80 | 59.10 | 100.00 |
类别 | 飞机 | 汽车 | 圆锥 | 钢琴 | 人 | 花盆 | 吉他 | 杯子 | 床 | 桌子 | 浴缸 |
---|---|---|---|---|---|---|---|---|---|---|---|
对照 | 44.03 | 43.77 | 44.27 | 40.43 | 43.05 | 37.85 | 43.57 | 36.50 | 40.84 | 42.14 | 38.12 |
本文 | 71.83 | 65.33 | 58.36 | 61.58 | 66.81 | 63.79 | 64.75 | 47.95 | 53.36 | 54.57 | 47.26 |
Table 2 Comparison of the effect of the 3DCLAT on different classes of transferable attack on ModelNet40/%
类别 | 飞机 | 汽车 | 圆锥 | 钢琴 | 人 | 花盆 | 吉他 | 杯子 | 床 | 桌子 | 浴缸 |
---|---|---|---|---|---|---|---|---|---|---|---|
对照 | 44.03 | 43.77 | 44.27 | 40.43 | 43.05 | 37.85 | 43.57 | 36.50 | 40.84 | 42.14 | 38.12 |
本文 | 71.83 | 65.33 | 58.36 | 61.58 | 66.81 | 63.79 | 64.75 | 47.95 | 53.36 | 54.57 | 47.26 |
受害者模型 | 攻击方法 | ModelNet40 | ShapeNet Part | ||||||
---|---|---|---|---|---|---|---|---|---|
无防御 | SRS | SOR | DUP-Net | 无防御 | SRS | SOR | DUP-Net | ||
PointNet | 3D-Adv | 100.0 | 37.4 | 18.4 | 9.62 | 100.0 | 39.5 | 15.6 | 8.73 |
AdvPC | 93.7 | 89.6 | 53.6 | 23.1 | 92.7 | 89.2 | 53.1 | 24.8 | |
AOF | 96.7 | 99.7 | 94.2 | 75.4 | 95.4 | 99.0 | 93.5 | 77.5 | |
Mani-ADV | 93.8 | 93.5 | 87.0 | 72.3 | 92.7 | 88.7 | 85.5 | 74.1 | |
本文 | 100.0 | 98.4 | 93.5 | 83.8 | 100.0 | 98.8 | 92.9 | 85.3 | |
PointNet++ | 3D-Adv | 100.0 | 65.9 | 27.3 | 22.9 | 100.0 | 60.2 | 25.7 | 20.2 |
AdvPC | 100.0 | 86.8 | 79.0 | 72.1 | 99.5 | 85.1 | 81.9 | 70.6 | |
AOF | 96.7 | 92.8 | 91.0 | 88.2 | 97.6 | 88.2 | 85.8 | 81.2 | |
Mani-ADV | 95.0 | 94.1 | 90.7 | 87.3 | 94.4 | 89.6 | 86.7 | 83.0 | |
本文 | 100.0 | 94.6 | 92.4 | 89.1 | 100.0 | 92.9 | 90.1 | 82.5 | |
PointConv | 3D-Adv | 100.0 | 42.4 | 48.0 | 37.3 | 100.0 | 45.4 | 50.4 | 41.3 |
AdvPC | 93.7 | 80.5 | 94.0 | 88.1 | 98.1 | 77.6 | 92.1 | 84.8 | |
AOF | 96.7 | 90.3 | 96.3 | 96.0 | 94.2 | 90.5 | 95.5 | 95.2 | |
Mani-ADV | 98.4 | 92.1 | 97.2 | 96.3 | 97.9 | 93.1 | 96.7 | 95.0 | |
本文 | 100.0 | 95.0 | 95.6 | 96.5 | 100.0 | 94.3 | 95.4 | 95.3 | |
DGCNN | 3D-Adv | 100.0 | 29.5 | 23.7 | 23.2 | 100.0 | 25.2 | 17.7 | 15.9 |
AdvPC | 93.7 | 65.4 | 68.5 | 62.1 | 96.1 | 62.5 | 59.7 | 57.2 | |
AOF | 96.7 | 75.8 | 79.3 | 76.0 | 98.5 | 73.3 | 76.8 | 72.7 | |
Mani-ADV | 97.5 | 84.7 | 80.1 | 79.7 | 98.2 | 75.4 | 78.8 | 75.9 | |
本文 | 98.8 | 84.9 | 88.5 | 81.1 | 99.8 | 80.8 | 84.2 | 77.5 |
Table 3 Comparative results of defense performance of different algorithms on ModelNet40 and ShapeNet Part/%
受害者模型 | 攻击方法 | ModelNet40 | ShapeNet Part | ||||||
---|---|---|---|---|---|---|---|---|---|
无防御 | SRS | SOR | DUP-Net | 无防御 | SRS | SOR | DUP-Net | ||
PointNet | 3D-Adv | 100.0 | 37.4 | 18.4 | 9.62 | 100.0 | 39.5 | 15.6 | 8.73 |
AdvPC | 93.7 | 89.6 | 53.6 | 23.1 | 92.7 | 89.2 | 53.1 | 24.8 | |
AOF | 96.7 | 99.7 | 94.2 | 75.4 | 95.4 | 99.0 | 93.5 | 77.5 | |
Mani-ADV | 93.8 | 93.5 | 87.0 | 72.3 | 92.7 | 88.7 | 85.5 | 74.1 | |
本文 | 100.0 | 98.4 | 93.5 | 83.8 | 100.0 | 98.8 | 92.9 | 85.3 | |
PointNet++ | 3D-Adv | 100.0 | 65.9 | 27.3 | 22.9 | 100.0 | 60.2 | 25.7 | 20.2 |
AdvPC | 100.0 | 86.8 | 79.0 | 72.1 | 99.5 | 85.1 | 81.9 | 70.6 | |
AOF | 96.7 | 92.8 | 91.0 | 88.2 | 97.6 | 88.2 | 85.8 | 81.2 | |
Mani-ADV | 95.0 | 94.1 | 90.7 | 87.3 | 94.4 | 89.6 | 86.7 | 83.0 | |
本文 | 100.0 | 94.6 | 92.4 | 89.1 | 100.0 | 92.9 | 90.1 | 82.5 | |
PointConv | 3D-Adv | 100.0 | 42.4 | 48.0 | 37.3 | 100.0 | 45.4 | 50.4 | 41.3 |
AdvPC | 93.7 | 80.5 | 94.0 | 88.1 | 98.1 | 77.6 | 92.1 | 84.8 | |
AOF | 96.7 | 90.3 | 96.3 | 96.0 | 94.2 | 90.5 | 95.5 | 95.2 | |
Mani-ADV | 98.4 | 92.1 | 97.2 | 96.3 | 97.9 | 93.1 | 96.7 | 95.0 | |
本文 | 100.0 | 95.0 | 95.6 | 96.5 | 100.0 | 94.3 | 95.4 | 95.3 | |
DGCNN | 3D-Adv | 100.0 | 29.5 | 23.7 | 23.2 | 100.0 | 25.2 | 17.7 | 15.9 |
AdvPC | 93.7 | 65.4 | 68.5 | 62.1 | 96.1 | 62.5 | 59.7 | 57.2 | |
AOF | 96.7 | 75.8 | 79.3 | 76.0 | 98.5 | 73.3 | 76.8 | 72.7 | |
Mani-ADV | 97.5 | 84.7 | 80.1 | 79.7 | 98.2 | 75.4 | 78.8 | 75.9 | |
本文 | 98.8 | 84.9 | 88.5 | 81.1 | 99.8 | 80.8 | 84.2 | 77.5 |
攻击方法 | CD(10-4) | HD(10-2) | l2 |
---|---|---|---|
3D-Adv | 6.115 | 4.372 | 0.563 |
AdvPC | 16.576 | 5.437 | 0.850 |
AOF | 17.282 | 8.138 | 5.392 |
Mani-ADV | 20.363 | 4.021 | 6.449 |
本文 | 16.641 | 3.955 | 5.513 |
Table 4 Mean values of CD, HD, and l2 for the confrontation samples of the five attack methods in the ModelNet40 with PointNet as the victim model
攻击方法 | CD(10-4) | HD(10-2) | l2 |
---|---|---|---|
3D-Adv | 6.115 | 4.372 | 0.563 |
AdvPC | 16.576 | 5.437 | 0.850 |
AOF | 17.282 | 8.138 | 5.392 |
Mani-ADV | 20.363 | 4.021 | 6.449 |
本文 | 16.641 | 3.955 | 5.513 |
攻击方法 | 时间 |
---|---|
3D-Adv | 27.343 |
AdvPC | 34.572 |
AOF | 70.298 |
Mani-ADV | 36.748 |
本文 | 33.042 |
Table 5 Mean time for single adversarial sample generation for different methods/s
攻击方法 | 时间 |
---|---|
3D-Adv | 27.343 |
AdvPC | 34.572 |
AOF | 70.298 |
Mani-ADV | 36.748 |
本文 | 33.042 |
Fig. 4 Effect of λ2 on the source model ASR and the target model transferable mean ASR for 3DCLAT ((a) The source model ASR; (b) The target model transferable mean ASR)
λ3 | ASR/% | CD(10-4) | HD(10-2) | l2 |
---|---|---|---|---|
0.1 | 100.0 | 17.759 | 5.940 | 7.346 |
0.3 | 100.0 | 16.641 | 3.955 | 5.513 |
0.5 | 85.8 | 15.935 | 3.549 | 5.195 |
3DCLAT在以PointNet为受害者模型,λ2=10的条件下不同的λ3的ASR,CD,HD和l2对比 Table 6 3DCLAT compared the ASR, CD, HD and l2 of different λ3 with PointNet as the victim model and λ2=10
λ3 | ASR/% | CD(10-4) | HD(10-2) | l2 |
---|---|---|---|---|
0.1 | 100.0 | 17.759 | 5.940 | 7.346 |
0.3 | 100.0 | 16.641 | 3.955 | 5.513 |
0.5 | 85.8 | 15.935 | 3.549 | 5.195 |
λ3 | No defense | SRS | SOR | DUP-Net |
---|---|---|---|---|
0.1 | 100.0 | 80.1 | 72.3 | 65.9 |
0.2 | 100.0 | 90.7 | 84.4 | 73.8 |
0.3 | 100.0 | 98.4 | 93.5 | 83.3 |
0.4 | 92.4 | 86.3 | 80.1 | 75.4 |
0.5 | 85.8 | 83.2 | 77.2 | 74.9 |
Table 7 ASR/% of 3DCLAT's white-box attack on PointNet for different λ3 values after defense by three defense algorithms in the setting of m=100
λ3 | No defense | SRS | SOR | DUP-Net |
---|---|---|---|---|
0.1 | 100.0 | 80.1 | 72.3 | 65.9 |
0.2 | 100.0 | 90.7 | 84.4 | 73.8 |
0.3 | 100.0 | 98.4 | 93.5 | 83.3 |
0.4 | 92.4 | 86.3 | 80.1 | 75.4 |
0.5 | 85.8 | 83.2 | 77.2 | 74.9 |
语义 损失 | 低频 损失 | ASRS | ASRT | CD(10-4) | HD(10-2) | l2 |
---|---|---|---|---|---|---|
× | × | 100.0 | 40.4 | 7.267 | 0.322 | 0.271 |
√ | × | 100.0 | 83.6 | 17.759 | 4.440 | 7.469 |
× | √ | 95.7 | 33.6 | 6.641 | 0.295 | 0.258 |
√ | √ | 100.0 | 67.4 | 16.641 | 3.955 | 5.513 |
Table 8 Comparison of the overall results of 3DCLAT with PointNet as the victim model, PointNet++ as the target model for the source model ASR (ASRS)/% and the target model ASR (ASRT)/%, CD, HD and l2
语义 损失 | 低频 损失 | ASRS | ASRT | CD(10-4) | HD(10-2) | l2 |
---|---|---|---|---|---|---|
× | × | 100.0 | 40.4 | 7.267 | 0.322 | 0.271 |
√ | × | 100.0 | 83.6 | 17.759 | 4.440 | 7.469 |
× | √ | 95.7 | 33.6 | 6.641 | 0.295 | 0.258 |
√ | √ | 100.0 | 67.4 | 16.641 | 3.955 | 5.513 |
[1] | AKHTAR N, MIAN A. Threat of adversarial attacks on deep learning in computer vision: a survey[J]. IEEE Access, 2018, 6: 14410-14430. |
[2] | ZHANG W E, SHENG Q Z, ALHAZMI A, et al. Adversarial attacks on deep-learning models in natural language processing: a survey[J]. ACM Transactions on Intelligent Systems and Technology, 2020, 11(3): 24. |
[3] | TSAI T, YANG K C, HO T Y, et al. Robust adversarial objects against deep learning models[C]// The 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 954-962. |
[4] | XIANG C, QI C R, LI B. Generating 3D adversarial point clouds[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 9128-9136. |
[5] | ZHOU H, CHEN D D, LIAO J, et al. LG-GAN: label guided adversarial network for flexible targeted attack of point cloud based deep networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 10353-10362. |
[6] | HAMDI A, ROJAS S, THABET A, et al. AdvPC: transferable adversarial perturbations on 3d point clouds[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 241-257. |
[7] | MA C C, MENG W L, WU B Y, et al. Efficient joint gradient based attack against SOR defense for 3D point cloud classification[C]// The 28th ACM International Conference on Multimedia. New York: ACM, 2020: 1819-1827. |
[8] | HU Q J, LIU D Z, HU W. Exploring the devil in graph spectral domain for 3D point cloud attacks[C]// The 17th European Conference on Computer Vision. Cham: Springer, 2022: 229-248. |
[9] | TANG K K, WU J P, PENG W L, et al. Deep manifold attack on point clouds via parameter plane stretching[C]// The 37th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 2420-2428. |
[10] | XU H Y, YAN M, LI C L, et al. E2E-VLP:end-to-end vision-language pre-training enhanced by visual learning[EB/OL]. (2021-06-03) [2024-07-15]https://arxiv.org/abs/2106.01804v2. |
[11] | YAO L W, HUANG R H, HOU L, et al. FILIP: fine-grained interactive language-image pre-training[EB/OL]. (2021-11-09) [2024-07-15]https://arxiv.org/abs/2111.07783v1. |
[12] | RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[EB/OL]. (2021-02-26) [2024-07-15]https://arxiv.org/abs/2103.00020?file=2103.00020. |
[13] | MAO C Z, GENG S, YANG J F, et al. Understanding zero-shot adversarial robustness for large-scale models[EB/OL]. (2022-12-14) [2024-07-15]https://arxiv.org/abs/2212.07016?context=cs. |
[14] | WICKER M, KWIATKOWSKA M. Robustness of 3D deep learning in an adversarial setting[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 11759-11767. |
[15] | YANG J C, ZHANG Q, FANG R Y, et al. Adversarial attack and defense on point sets[EB/OL]. (2019-02-28) [2024-07-15]https://arxiv.org/abs/1902.10899. |
[16] | ZHENG T H, CHEN C Y, YUAN J S, et al. PointCloud saliency maps[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 1598-1606. |
[17] | ZHAO Y, WU Y W, CHEN C H, et al. On isometry robustness of deep 3D point cloud models under adversarial attacks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 1198-1207. |
[18] | LIU D Z, HU W. Imperceptible transfer attack and defense on 3D point cloud classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023: 45(4): 4727-4746. |
[19] | GUO M H, CAI J X, LIU Z N, et al. PCT: point cloud transformer[J]. Computational Visual Media, 2021, 7: 187-199. |
[20] | ZHAO H S, JIANG L, JIA J Y, et al. Point transformer[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 16239-16248. |
[21] | YU X M, TANG L L, RAO Y M, et al. Point-BERT: pre-training 3D point cloud transformers with masked point modeling[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 19291-19300. |
[22] | ZHANG C, WAN H C, SHEN X Y, et al. PVT: point-voxel transformer for point cloud learning[J]. International Journal of Intelligent Systems, 2022, 37(12): 11985-12008. |
[23] | WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 146. |
[24] | UY M A, PHAM Q H, HUA B S, et al. Revisiting point cloud classification: a new benchmark dataset and classification model on real-world data[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 1588-1597. |
[25] | CHANG A X, FUNKHOUSER T, GUIBAS L, et al. ShapeNet:an information-rich 3D model repository[EB/OL]. [2024-07-30]https://arxiv.org/abs/1512.03012. |
[26] | CHARLES R Q, SU H, KAICHUN M, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 77-85. |
[27] | QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]// The 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 5105-5114. |
[28] | WU Z R, SONG S R, KHOSLA A, et al. 3D ShapeNets: a deep representation for volumetric shapes[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2015: 1912-1920. |
[29] | GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[C]// The 3rd International Conference on Learning Representations. Washington DC, 2015: 1-11. |
[30] | MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant to adversarial attacks[EB/OL]. (2017-06-19) [2024-07-15]https://arxiv.org/abs/1706.06083. |
[31] | CARLINI N, WAGNER D. Towards evaluating the robustness of neural networks[C]// 2017 IEEE Symposium on Security and Privacy. New York: IEEE Press, 2017: 39-57. |
[32] | LIU D, YU R, SU H. Extending adversarial attacks and defenses to deep 3D point cloud classifiers[C]// 2019 IEEE International Conference on Image Processing. New York: IEEE Press, 2019: 2279-2283. |
[33] | ZHANG Y, LIANG G B, SALEM T, et al. Defense-PointNet: protecting PointNet against adversarial attacks[C]// 2019 IEEE International Conference on Big Data. New York: IEEE Press, 2019: 5654-5660. |
[34] | LIU D Z, HU W, LI X. Point cloud attacks in graph spectral domain: when 3D geometry meets graph signal processing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(5): 3079-3095. |
[35] | TAO Y B, LIU D Z, ZHOU P, et al. 3DHacker: spectrum-based decision boundary generation for hard-label 3D point cloud attack[C]// 2023 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2023: 14294-14304. |
[36] | LIU B B, ZHANG J L, ZHU J H. Boosting 3D adversarial attacks with attacking on frequency[J]. IEEE Access, 2022, 10: 50974-50984. |
[37] | HEGDE D, VALANARASU J, PATEL V. CLIP goes 3D: leveraging prompt tuning for language grounded 3d recognition[C]// 2023 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2023: 2020-2030. |
[38] | HUANG T Y, DONG B W, YANG Y H, et al. CLIP2Point: transfer clip to point cloud classification with image-depth pre-training[C]// 2023 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2023: 22100-22110. |
[39] | LIU M H, SHI R X, KUANG K M, et al. OpenShape:scaling up 3D shape representation towards open-world understanding[EB/OL]. (2023-05-18) [2024-07-15]https://arxiv.org/abs/2305.10764. |
[40] | SANGHI A, JAYARAMAN P K, RAMPINI A, et al. Sketch-a -shape:zero-shot sketch-to-3d shape generation[EB/OL]. (2023-07-08) [2024-07-15]https://arxiv.org/abs/2307.03869. |
[41] | WANG H W, TANG J J, JI J Y, et al. Beyond first impressions: integrating joint multi-modal cues for comprehensive 3D representation[C]// The 31st ACM International Conference on Multimedia. New York: ACM, 2023: 3403-3414. |
[42] | XUE L, GAO M F, XING C, et al. ULIP: learning a unified representation of language, images, and point clouds for 3D understanding[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 1179-1189. |
[43] | ZENG Y H, JIANG C H, MAO J G, et al. CLIP2: contrastive language-image-point pretraining from real-world point cloud data[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 15244-15253. |
[44] | ZHANG J B, DONG R P, MA K S. CLIP-FO3D: learning free open-world 3D scene representations from 2D dense CLIP[C]// 2023 IEEE/CVF International Conference on Computer Vision Workshops. New York: IEEE Press, 2023: 2040-2051. |
[45] | ZHANG R R, GUO Z Y, ZHANG W, et al. PointCLIP: point cloud understanding by CLIP[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 8542-8552. |
[46] | ZHU X Y, ZHANG R R, HE B W, et al. PointCLIP V2: prompting clip and GPT for powerful 3D open-world learning[C]// 2023 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2023: 2639-2650. |
[47] | XUE L, YU N, ZHANG S, et al. ULIP-2: towards scalable multimodal pre-training for 3D understanding[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2024: 27081-27091. |
[48] | ZHOU H, CHEN K J, ZHANG W M, et al. DUP-Net: denoiser and upsampler network for 3D adversarial point clouds defense[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 1961-1970. |
[49] | PÉREZ C S, PÉREZ J C, ALFARRA M, et al. 3Deformrs: certifying spatial deformations on point clouds[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 15148-15158. |
[50] | LI K D, ZHANG Z M, ZHONG C C, et al. Robust structured declarative classifiers for 3d point clouds: defending adversarial attacks with implicit gradients[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 15273-15283. |
[51] | SHEN G, KIM W S, NARANG S K, et al. Edge-adaptive transforms for efficient depth map coding[C]// The 28th Picture Coding Symposium. New York: IEEE Press, 2010: 566-569. |
[52] | HU W, CHEUNG G, LI X, et al. Depth map compression using multi-resolution graph-based transform for depth-image-based rendering[C]// 2012 19th IEEE International Conference on Image Processing. New York: IEEE Press, 2012: 1297-1300. |
[53] |
HU W, CHEUNG G, ORTEGA A, et al. Multiresolution graph Fourier transform for compression of piecewise smooth images[J]. IEEE Transactions on Image Processing, 2015, 24(1): 419-433.
DOI PMID |
[54] | HU W, CHEUNG G, ORTEGA A, et al. Intra-prediction and generalized graph Fourier transform for image coding[J]. IEEE Signal Processing Letters, 2015, 22(11): 1913-1917. |
[55] | SHUMAN D I, NARANG S K, FROSSARD P, et al. The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains[J]. IEEE Signal Processing Magazine, 2013, 30(3): 83-98. |
[56] | YI L, KIM V G, CEYLAN D, et al. A scalable active framework for region annotation in 3D shape collections[J]. ACM Transactions on Graphics, 2016, 35(6): 210. |
[57] | WU W X, QI Z G, LI F X. PointConv: deep convolutional networks on 3D point clouds[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 9613-9622. |
[58] | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. (2014-12-22) [2024-07-15]https://arxiv.org/abs/1412.6980. |
[59] | FAN H Q, SU H, GUIBAS L. A point set generation network for 3D object reconstruction from a single image[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 2463-2471. |
[60] |
TAHA A A, HANBURY A. Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool[J]. BMC Medical Imaging, 2015, 15: 29.
DOI PMID |
[1] | LIU Hongshuo, BAI Jing, YAN Hao, LIN Gan. BGS-Net: fine-grained classification networks with balanced generalization and specialization for 3D point clouds [J]. Journal of Graphics, 2025, 46(3): 602-613. |
[2] | WANG Changchang, JIANG Kun, JIANG Kai, ZHANG Peng, SU Zhiyong. Feedback-based iterative sampling denoising framework for point clouds with high-level noise [J]. Journal of Graphics, 2025, 46(3): 614-624. |
[3] | LI Zhihuan, NING Xiaojuan, LV Zhiyong, SHI Zhenghao, JIN Haiyan, WANG Yinghui, ZHOU Wenming. DEMF-Net: dual-branch feature enhancement and multi-scale fusion for semantic segmentation of large-scale point clouds [J]. Journal of Graphics, 2025, 46(2): 259-269. |
[4] | FANG Chenghao, WANG Kangkan. 3D human pose and shape estimation from single-view point clouds with semi-supervised learning [J]. Journal of Graphics, 2025, 46(2): 393-401. |
[5] | WU Yiqi, HE Jiale, ZHANG Tiantian, ZHANG Dejun, LI Yanli, CHEN Yilin. Unsupervised 3D point cloud non-rigid registration based on multi-feature extraction and point correspondence [J]. Journal of Graphics, 2025, 46(1): 150-158. |
[6] | YUAN Chao, ZHAO Mingxue, ZHANG Fengyi, FENG Xiaoyong, LI Bing, CHEN Rui. Point cloud feature enhanced 3D object detection in complex indoor scenes [J]. Journal of Graphics, 2025, 46(1): 59-69. |
[7] | WANG Changsheng. Research on prompt engineering for large model art image generation [J]. Journal of Graphics, 2024, 45(6): 1243-1255. |
[8] | WANG Zongji, LIU Yunfei, LU Feng. Cloud Sphere: a 3D shape representation method via progressive deformation [J]. Journal of Graphics, 2024, 45(6): 1375-1388. |
[9] | WANG Peng, XIN Peikang, LIU Yin, YU Fangqiang. Extracting node center coordinates of point clouds in reticulated shell structure using least squares method [J]. Journal of Graphics, 2024, 45(1): 183-190. |
[10] | HAN Yazhen, YIN Mengxiao, MA Weizhao, YANG Shigeng, HU Jinfei, ZHU Congyang. DGOA: point cloud upsampling based on dynamic graph and offset attention [J]. Journal of Graphics, 2024, 45(1): 219-229. |
[11] | LI Hong-xuan, ZHANG Song-yang, REN Bo. High-capacity clipped robust image steganography based on multilevel invertible neural networks [J]. Journal of Graphics, 2023, 44(6): 1149-1161. |
[12] | ZHOU Rui-chuang, TIAN Jin, YAN Feng-ting, ZHU Tian-xiao, ZHANG Yu-jin. Point cloud classification model incorporating external attention and graph convolution [J]. Journal of Graphics, 2023, 44(6): 1162-1172. |
[13] | WANG Ke-xin, JIN Ying-han, ZHANG Dong-liang. Virtual glasses try-on using a depth camera [J]. Journal of Graphics, 2023, 44(5): 988-996. |
[14] | LIU Yan, XIONG You-yi, HAN Miao-miao, YANG Long. Geometric feature guided multi-level segmentation for object point clouds [J]. Journal of Graphics, 2023, 44(4): 755-763. |
[15] | ZHAO Yu-kun, REN Shuang, ZHANG Xin-yun. A 3D point cloud defense framework combined with adversarial examples detection and reconstruction [J]. Journal of Graphics, 2023, 44(3): 560-569. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||