欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (4): 837-846.DOI: 10.11996/JG.j.2095-302X.2025040837

• 计算机图形学与虚拟现实 • 上一篇    下一篇

面向单目可见光环境的自适应双手重建网络

廖国琼1,2(), 黄龙杰1, 李清新2, 辜勇3, 李海波1,4   

  1. 1.江西财经大学虚拟现实(VR)现代产业学院,江西 南昌 330032
    2.江西财经大学信息管理与数学学院,江西 南昌 330013
    3.江西财经大学软件与物联网工程学院,江西 南昌 330013
    4.瑞典皇家理工学院,斯德哥尔摩 SE-100 44
  • 收稿日期:2024-10-12 修回日期:2025-02-18 出版日期:2025-08-30 发布日期:2025-08-11
  • 第一作者:廖国琼(1969-),男,教授,博士。主要研究方向为人机交互。E-mail:liaoguoqiong@163.com
  • 基金资助:
    江西省研究生创新专项(YC2024-S392)

Adaptive two-hand reconstruction network for monocular visible light environments

LIAO Guoqiong1,2(), HUANG Longjie1, LI Qingxin2, GU Yong3, LI Haibo1,4   

  1. 1. Modern Industry School of Virtual Reality (VR), Jiangxi University of Finance and Economics, Nanchang Jiangxi 330032, China
    2. School of Information Management and Math, Jiangxi University of Finance and Economics, Nanchang Jiangxi 330013, China
    3. School of Software and Internet of Things Engineering, Jiangxi University of Finance and Economics, Nanchang Jiangxi 330013, China
    4. KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
  • Received:2024-10-12 Revised:2025-02-18 Published:2025-08-30 Online:2025-08-11
  • First author:LIAO Guoqiong (1969-), professor, Ph.D. His main research interest covers human-computer interaction. E-mail:liaoguoqiong@163.com
  • Supported by:
    Graduate Innovation Special Project in Jiangxi Province(YC2024-S392)

摘要:

准确重建双手手部网格对于自然的人机交互体验来说是一个至关重要的过程,但由于双手的遮挡、户外收集双手交互数据集的复杂性和复杂的光照环境干扰等因素导致双手手部重建任务仍极具挑战性。目前已有的工作大多是在环境干扰比较小的实验室等场景下取得的的良好效果,而在复杂的光照场景中的重建效果仍不佳。为了解决上述问题,提出一种面向单目可见光环境的自适应手部重建网络。通过引入单手检测框和使用2D复杂光照场景数据集进行弱监督等策略使得模型得以对复杂光照场景产生泛化性;设计的双手特征交互器得以有效建立左右手特征的远距离依赖关系,缓解了单手检测框缺乏双手交互信息的问题;针对如何有效融合交互特征与单手特征的问题,设计了自适应融合的策略,增强了模型的鲁棒性。实验结果表明,在包含多个复杂光照场景的HIC数据集中取得了最佳的效果。

关键词: 复杂光照场景, 手部网格, 双手交互, 弱监督, 特征融合

Abstract:

An accurate reconstruction of the hand mesh is a crucial process for a natural human-computer interaction experience, but the task of hand reconstruction remains highly challenging due to factors such as hand occlusion, the complexity of collecting hand interaction data outdoors, and interference in complex lighting environments. Most of the existing work has achieved good results in laboratory and other environments with less interference, but the reconstruction performance in complex lighting scenes remains poor. To solve these problems, an adaptive two-hand reconstruction network was proposed for monocular visible light environments. By introducing a single hand detection frame and using a 2D complex lighting scene dataset for weak supervision, the model can enable generalization to complex lighting scenarios. The designed hand feature interaction module effectively established long-distance dependence relationships between the left and right hand features, alleviating the problem of the single hand detection frame lacking hand interaction information. The designed adaptive fusion strategy effectively integrated interaction features and single hand features, enhancing the robustness of the model. Experimental results demonstrated that the best results were achieved on the HIC dataset, comprising multiple complex lighting scenarios.

Key words: complex lighting, hand mesh, two-hand interaction, weak supervision, feature fusion

中图分类号: