[1] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2014: 580-587.
|
[2] |
GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision. New York: IEEE Press, 2015: 1440-1448.
|
[3] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI
PMID
|
[4] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788.
|
[5] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]// The 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
|
[6] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327.
|
[7] |
冯珺, 潘司晨, 赵帅, 等. 基于改进RPN的孪生小样本电力目标检测[J]. 河北科技大学学报, 2023, 44(1): 67-73.
|
|
FENG J, PAN S C, ZHAO S, et al. Research on few-shot power detection of Siamese network based on improved RPN[J]. Journal of Hebei University of Science and Technology, 2023, 44(1): 67-73 (in Chinese).
|
[8] |
顾超越, 李喆, 史晋涛, 等. 基于改进Faster-RCNN的无人机巡检架空线路销钉缺陷检测[J]. 高电压技术, 2020, 46(9): 3089-3096.
|
|
GU C Y, LI Z, SHI J T, et al. Detection for pin defects of overhead lines by UAV patrol image based on improved faster-RCNN[J]. High Voltage Engineering, 2020, 46(9): 3089-3096 (in Chinese).
|
[9] |
黄芹芹, 董洁, 陈玥, 等. 一种改进SSD算法的输电线路目标检测方法[J]. 电工电气, 2021(6): 51-55.
|
|
HUANG Q Q, DONG J, CHEN Y, et al. A transmission line target detection method with improved SSD algorithm[J]. Electrotechnics Electric, 2021(6): 51-55 (in Chinese).
|
[10] |
郝帅, 赵新生, 马旭, 等. 基于TR-YOLOv5的输电线路多类缺陷目标检测方法[J]. 图学学报, 2023, 44(4): 667-676.
DOI
|
|
HAO S, ZHAO X S, MA X, et al. Multi-class defect target detection method for transmission lines based on TR-YOLOv5[J]. Journal of Graphics, 2023, 44(4): 667-676 (in Chinese).
DOI
|
[11] |
李利霞, 王鑫, 王军, 等. 基于特征融合与注意力机制的无人机图像小目标检测算法[J]. 图学学报, 2023, 44(4): 658-666.
DOI
|
|
LI L X, WANG X, WANG J, et al. Small object detection algorithm in UAV image based on feature fusion and attention mechanism[J]. Journal of Graphics, 2023, 44(4): 658-666 (in Chinese).
|
[12] |
苏凯第, 赵巧娥. 基于YOLOv5算法的无人机电力巡检快速图像识别[J]. 电力科学与工程, 2022, 38(4): 43-48.
DOI
|
|
SU K D, ZHAO Q E. Fast image recognition of UAV power inspection based on YOLOv5 algorithm[J]. Electric Power Science and Engineering, 2022, 38(4): 43-48 (in Chinese).
DOI
|
[13] |
奉志强, 谢志军, 包正伟, 等. 基于改进YOLOv5的无人机实时密集小目标检测算法[J]. 航空学报, 2023, 44(7): 327106.
DOI
|
|
FENG Z Q, XIE Z J, BAO Z W, et al. Real-time dense small object detection algorithm for UAV based on improved YOLOv5[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(7): 327106 (in Chinese).
|
[14] |
冯辉, 蒋成鑫, 徐海祥, 等. 基于多特征聚合的水面遮挡目标检测算法[J]. 华中科技大学学报(自然科学版), 2024, 52(4): 76-81.
|
|
FENG H, JIANG C X, XU H X, et al. Multi feature fusion-based water occlusion object detection algorithm[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52(4): 76-81 (in Chinese).
|
[15] |
HUANG H Q, LAN G W, WEI J, et al. TLI-YOLOv5: a lightweight object detection framework for transmission line inspection by unmanned aerial vehicle[J]. Electronics, 2023, 12(15): 3340.
|
[16] |
翟永杰, 郭聪彬, 王乾铭, 等. 基于隐含空间知识融合的输电线路多金具检测方法[J]. 图学学报, 2023, 44(5): 918-927.
DOI
|
|
ZHAI Y J, GUO C B, WANG Q M, et al. Multi-fitting detection method for transmission lines based on implicit spatial knowledge fusion[J]. Journal of Graphics, 2023, 44(5): 918-927 (in Chinese).
|
[17] |
冯欣, 胡成杭. 一种自监督掩码图像建模的遮挡目标检测方法[J]. 重庆理工大学学报(自然科学), 2024, 38(6): 186-193.
|
|
FENG X, HU C H. An occlusion object detection method based on self-supervised mask image modeling[J]. Journal of Chongqing University of Technology (Natural Science), 2024, 38(6): 186-193 (in Chinese).
|
[18] |
ZHAO Z B, PAN Y T, GUO G X, et al. YOLO‐AFPN: marrying YOLO and AFPN for external damage detection of transmission lines[J]. IET Generation, Transmission & Distribution, 2024, 18(9): 1935-1946.
|
[19] |
YANG G Y, LEI J, ZHU Z K, et al. AFPN: asymptotic feature pyramid network for object detection[C]// 2023 IEEE International Conference on Systems, Man, and Cybernetics. New York: IEEE Press, 2023: 2184-2189.
|
[20] |
DING X H, ZHANG X Y, ZHOU Y G, et al. Scaling up your kernels to 31×31: revisiting large kernel design in CNNs[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 11953-11965.
|
[21] |
WANG C Y, YEH I H, LIAO H Y M. YOLOv9:learning what you want to learn using programmable gradient information[C]// The 18th European Conference on Computer Vision. Cham: Springer, 2024: 1-21.
|
[22] |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 7464-7475.
|
[23] |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 8759-8768.
|
[24] |
SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects[C]// European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer, 2022: 443-459.
|
[25] |
DAI X Y, CHEN Y P, XIAO B, et al. Dynamic head: unifying object detection heads with attentions[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 7369-7378.
|