欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (5): 950-959.DOI: 10.11996/JG.j.2095-302X.2025050950

• 图像处理与计算机视觉 • 上一篇    下一篇

基于自适应特征融合金字塔与注意力机制的输电线路绝缘子缺陷检测方法

翟永杰(), 翟邦朝, 胡哲东, 杨珂, 王乾铭(), 赵晓瑜   

  1. 华北电力大学自动化系河北 保定 071003
  • 收稿日期:2024-12-06 接受日期:2025-02-12 出版日期:2025-10-30 发布日期:2025-09-10
  • 通讯作者:王乾铭(1995-),男,讲师,博士。主要研究方向为计算机视觉与深度学习。E-mail:qianmingwang@ncepu.edu.cn
  • 第一作者:翟永杰(1972-),男,教授,博士。主要研究方向为电力视觉。E-mail:zhaiyongjie@ncepu.edu.cn
  • 基金资助:
    国家自然科学基金(62373151);河北省自然科学基金面上项目(F2023502010);中央高校基本科研业务费专项资金(2023JC006);中央高校基本科研业务费专项资金(2024MS136)

Adaptive feature fusion pyramid and attention mechanism-based method for transmission line insulator defect detection

ZHAI Yongjie(), ZHAI Bangchao, HU Zhedong, YANG Ke, WANG Qianming(), ZHAO Xiaoyu   

  1. Department of Automation, Huabei Electric Power University, Baoding Hebei 071003, China
  • Received:2024-12-06 Accepted:2025-02-12 Published:2025-10-30 Online:2025-09-10
  • First author:ZHAI Yongjie (1972-), professor, Ph.D. His main research interest covers power vision. E-mail:zhaiyongjie@ncepu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(62373151);Hebei Provincial Natural Science Foundation general project(F2023502010);Special Fund for Basic Scientific Research of Central Universities(2023JC006);Special Fund for Basic Scientific Research of Central Universities(2024MS136)

摘要:

针对输电线路绝缘子缺陷样本中存在的复杂背景干扰及缺陷区域尺度不一问题,提出了一种基于自适应融合特征金字塔与注意力机制的输电线路绝缘子缺陷检测方法。首先,利用自适应融合模块(AF)来处理不同尺度的特征信息,并将其集成到特征金字塔网络之中,以缓解绝缘子航拍图像中存在的缺陷区域尺度不一问题。然后,基于注意力机制的缺陷特征细化模块(DFRM),通过增大感受野以及捕获缺陷区域的上下文特征来应对复杂背景噪声所带来的干扰。最后,将改进后的算法应用到真实输电线路绝缘子缺陷数据集进行实验。实验结果表明,该方法在绝缘子缺陷检测任务中优于其他方法,相较于基线模型准确率提升了5.7%,为电网智能巡检提供了一种有效方案。

关键词: 绝缘子缺陷, 特征融合, 注意力机制, 目标检测, 多尺度特征

Abstract:

To address the challenges of complex background interference and varying defect region scales in transmission line insulator samples, a method for transmission line insulator defect detection based on an adaptive fusion feature pyramid and attention mechanism was proposed. First, an adaptive fusion module (AF) was introduced to process multi-scale feature information, which was integrated into the feature pyramid network to mitigate the inconsistencies of defect region scales in aerial images of insulators. Next, a defect feature refinement module (DFRM) based on an attention mechanism was designed to handle interference from complex background noise by expanding the receptive field and capturing the contextual features of defective regions. Finally, the improved algorithm was validated on a real-world transmission line insulator defect dataset. Experimental results demonstrated that the proposed method outperformed existing approaches in insulator defect detection, achieving a 5.7% improvement in accuracy compared to the baseline model. These findings offered an effective solution for intelligent inspection in power grid systems.

Key words: insulator defect, feature fusion, attention mechanism, object detection, multi-scale feature

中图分类号: