[1] |
KLAUSER F. Policing with the drone: towards an aerial geopolitics of security[J]. Security Dialogue, 2022, 53(2): 148-163.
|
[2] |
SRIVASTAVA S K, SENG K P, ANG L M, et al. Drone-based environmental monitoring and image processing approaches for resource estimates of private native forest[J]. Sensors, 2022, 22(20): 7872.
|
[3] |
ROLDÁN-GÓMEZ J J, GONZÁLEZ-GIRONDA E, BARRIENTOS A. A survey on robotic technologies for forest firefighting: applying drone swarms to improve firefighters’ efficiency and safety[J]. Applied Sciences, 2021, 11(1): 363.
|
[4] |
ZHENG Q Q, LIN N, FU D, et al. Smart-contract-based agricultural service platform for drone plant protection operation optimization[J]. IEEE Internet of Things Journal, 2023, 10(24): 21363-21376.
|
[5] |
QI Y B, YANG R H, SU C H. An OSINT-driven security analysis of intelligent construction of water conservancy projects in China[C]// The 7th International Conference on Civil Engineering. Cham: Springer, 2023: 139-150.
|
[6] |
ELMOKADEM T, SAVKIN A V. A hybrid approach for autonomous collision-free UAV navigation in 3D partially unknown dynamic environments[J]. Drones, 2021, 5(3): 57.
|
[7] |
IVERSEN N, SCHOFIELD O B, COUSIN L, et al. Design, integration and implementation of an intelligent and self-recharging drone system for autonomous power line inspection[C]// 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE Press, 2021: 4168-4175.
|
[8] |
BENARBIA T, KYAMAKYA K. A literature review of drone-based package delivery logistics systems and their implementation feasibility[J]. Sustainability, 2021, 14(1): 360.
|
[9] |
ARULKUMARAN K, DEISENROTH M P, BRUNDAGE M, et al. Deep reinforcement learning: a brief survey[J]. IEEE Signal Processing Magazine, 2017, 34(6): 26-38.
|
[10] |
ZHAO X S, CHONG J Z, QI X H, et al. Vision object-oriented augmented sampling-based autonomous navigation for micro aerial vehicles[J]. Drones, 2021, 5(4): 107.
|
[11] |
DAI A N, PAPATHEODOROU S, FUNK N, et al. Fast frontier-based information-driven autonomous exploration with an MAV[C]// 2020 IEEE International Conference on Robotics and Automation. New York: IEEE Press, 2020: 9570-9576.
|
[12] |
CHEN S Y, ZHOU W F, YANG A S, et al. An end-to-end UAV simulation platform for visual SLAM and navigation[J]. Aerospace, 2022, 9(2): 48.
|
[13] |
AMER K, SAMY M, SHAKER M, et al. Deep convolutional neural network based autonomous drone navigation[EB/OL]. [2024-10-17]. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11605/2587105/Deep-convolutional-neural-network-based-autonomous-drone-navigation/10.1117/12.2587105.short.
|
[14] |
ARSHAD M A, KHAN S H, QAMAR S, et al. Drone navigation using region and edge exploitation-based deep CNN[J]. IEEE Access, 2022, 10: 95441-95450.
|
[15] |
CHAPLOT D S, GANDHI D, GUPTA S, et al. Learning to explore using active neural SLAM[EB/OL]. [2024-10-02]. https://arxiv.org/abs/2004.05155.
|
[16] |
SADEGHI F, LEVINE S. CAD2RL:real single-image flight without a single real image[EB/OL]. [2024-10-17]. https://arxiv.org/abs/1611.04201.
|
[17] |
ANWAR A, RAYCHOWDHURY A. Autonomous navigation via deep reinforcement learning for resource constraint edge nodes using transfer learning[J]. IEEE Access, 2020, 8: 26549-26560.
|
[18] |
WANG C, WANG J, WANG J J, et al. Deep-reinforcement- learning-based autonomous UAV navigation with sparse rewards[J]. IEEE Internet of Things Journal, 2020, 7(7): 6180-6190.
|
[19] |
丁建川, 肖金桐, 赵可新, 等. 基于脉冲神经网络的复杂场景导航避障算法[J]. 图学学报, 2023, 44(6): 1121-1129.
DOI
|
|
DING J C, XIAO J T, ZHAO K X, et al. Spiking neural network-based navigation and obstacle avoidance algorithm for complex scenes[J]. Journal of Graphics, 2023, 44(6): 1121-1129. (in Chinese)
|
[20] |
ZHANG Z X, DONG B, LI T, et al. Single depth-image 3D reflection symmetry and shape prediction[C]// 2023 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2023: 8862-8872.
|
[21] |
伍一鹤, 张振宁, 仇栋, 等. 基于深度强化学习的虚拟手自适应抓取研究[J]. 图学学报, 2021, 42(3): 462-469.
|
|
WU Y H, ZHANG Z N, QIU D, et al. Research on adaptive grasping of virtual hands based on deep reinforcement learning[J]. Journal of Graphics, 2021, 42(3): 462-469. (in Chinese)
|
[22] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2024-10-17]. https://arxiv.org/abs/1409.1556.
|
[23] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// The 26th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2012: 1097-1105.
|
[24] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7132-7141.
|
[25] |
KINGMA D. P, WELLING M. Auto-encoding variational Bayes[EB/OL]. [2024-10-17]. https://arxiv.org/abs/1312.6114.
|
[26] |
HAARNOJA T, ZHOU A, ABBEEL P, et al. Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor[EB/OL]. [2024-10-17]. http://proceedings.mlr.press/v80/haarnoja18b.html.
|
[27] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
DOI
PMID
|
[28] |
BENGIO Y, LOURADOUR J, COLLOBERT R, et al. Curriculum learning[C]// The 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 41-48.
|
[29] |
ZHANG L J, PENG J B, YI W G, et al. A state-decomposition DDPG algorithm for UAV autonomous navigation in 3-D complex environments[J]. IEEE Internet of Things Journal, 2024, 11(6): 10778-10790.
|