| [1] |
ALONSO I, MURILLO A C. EV-SegNet: semantic segmentation for event-based cameras[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2019: 1624-1633.
|
| [2] |
CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 1800-1807.
|
| [3] |
GEHRIG D, GEHRIG M, HIDALGO-CARRIÓ J, et al. Video to events: recycling video datasets for event cameras[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 3583-3592.
|
| [4] |
REBECQ H, RANFTL R, KOLTUN V, et al. High speed and high dynamic range video with an event camera[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(6): 1964-1980.
DOI
URL
|
| [5] |
MUNDA G, REINBACHER C, POCK T. Real-time intensity-image reconstruction for event cameras using manifold regularisation[J]. International Journal of Computer Vision, 2018, 126(12): 1381-1393.
DOI
|
| [6] |
HU Y H, DELBRUCK T, LIU S C. Learning to exploit multiple vision modalities by using grafted networks[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 85-101.
|
| [7] |
王超毅, 于男男, 乔羽, 等. 基于事件相机的图像语义分割方法[EB/OL]. [2024-10-08]. http://kns.cnki.net/kcms/detail/11.2925.tp.20241008.1600.005.html.
|
|
WANG C Y, YU N N, QIAO Y, et al. Event-based image semantic segmentation[EB/OL]. [2024-10-08]. http://kns.cnki.net/kcms/detail/11.2925.tp.20241008.1600.005.html. (in Chinese).
|
| [8] |
HUANG Y C, LIU Q S, METAXAS D. Video object segmentation by hypergraph cut[C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2009: 1738-1745.
|
| [9] |
HUANG Y C, LIU Q S, ZHANG S T, et al. Image retrieval via probabilistic hypergraph ranking[C]// 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2010: 3376-3383.
|
| [10] |
GAO Y, WANG M, TAO D C, et al. 3-D object retrieval and recognition with hypergraph analysis[J]. IEEE Transactions on Image Processing, 2012, 21(9): 4290-4303.
DOI
PMID
|
| [11] |
ZHOU D Y, HUANG J Y, SCHÖLKOPF B. Learning with hypergraphs: clustering, classification, and embedding[C]// The 20th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2006: 1601-1608.
|
| [12] |
CHEN F H, GAO Y, CAO D L, et al. Multimodal hypergraph learning for microblog sentiment prediction[C]// 2015 IEEE International Conference on Multimedia and Expo. New York: IEEE Press, 2015: 1-6.
|
| [13] |
JI R R, CHEN F H, CAO L J, et al. Cross-modality microblog sentiment prediction via bi-layer multimodal hypergraph learning[J]. IEEE Transactions on Multimedia, 2019, 21(4): 1062-1075.
DOI
URL
|
| [14] |
ZHANG Z Z, LIN H J, GAO Y. Dynamic hypergraph structure learning[EB/OL]. [2024-08-09]. https://www.ijcai.org/Proceedings/2018/0439.pdf
|
| [15] |
FENG Y F, YOU H X, ZHANG Z Z, et al. Hypergraph neural networks[C]// The 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 3558-3565.
|
| [16] |
ZHONG Y J, LI B, TANG L, et al. Detecting camouflaged object in frequency domain[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 4494-4503.
|
| [17] |
QIAN Y Y, YIN G J, SHENG L, et al. Thinking in frequency: face forgery detection by mining frequency-aware clues[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 86-103.
|
| [18] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. (2021-06-03) [2024-07-10]. https://arxiv.org/abs/2010.11929.
|
| [19] |
BINAS J, NEIL D, LIU S C, et al. DDD17:end-to-end DAVIS driving dataset[EB/OL]. (2017-11-04) [2024-07-10]. https://arxiv.org/abs/1711.01458.
|
| [20] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
|
| [21] |
ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 6230-6239.
|
| [22] |
CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder- decoder with atrous separable convolution for semantic image segmentation[C]// The 15th European Conference on Computer Vision. Cham: Springer, 2018: 833-851.
|
| [23] |
ZHENG S X, LU J C, ZHAO H S, et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 6877-6886.
|
| [24] |
LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 9992-10002.
|
| [25] |
XIE E Z, WANG W H, YU Z D, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[C]// The 35th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2021: 12077-12090.
|
| [26] |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2015: 3431-3440.
|
| [27] |
DONG B, WANG P C, WANG F. Head-free lightweight semantic segmentation with linear transformer[C]// The 37th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 516-524.
|