[1] |
YANG X, QI X J, ZHOU X B. Deep learning technologies for time series anomaly detection in healthcare: a review[J]. IEEE Access, 2023, 11: 117788-117799.
|
[2] |
MORID M A, SHENG O R L, DUNBAR J. Time series prediction using deep learning methods in healthcare[J]. ACM Transactions on Management Information Systems, 2023, 14(1): 2.
|
[3] |
KODE H, ELLEITHY K, ALMAZAYDEH L. Epileptic seizure detection in EEG signals using machine learning and deep learning techniques[J]. IEEE Access, 2024, 12: 80657-80668.
|
[4] |
XIE F, YUAN H, NING Y L, et al. Deep learning for temporal data representation in electronic health records: a systematic review of challenges and methodologies[J]. Journal of Biomedical Informatics, 2022, 126: 103980.
|
[5] |
THUWAJIT P, RANGPONG P, SAWANGJAI P, et al. EEGWaveNet: multiscale CNN-based spatiotemporal feature extraction for EEG seizure detection[J]. IEEE Transactions on Industrial Informatics, 2022, 18(8): 5547-5557.
|
[6] |
TANG Y X, WU Q Y, MAO H F, et al. Epileptic seizure detection based on path signature and Bi-LSTM network with attention mechanism[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2024, 32: 304-313.
DOI
PMID
|
[7] |
LU W J, LI J Z, WANG J Y, et al. A CNN-BiLSTM-AM method for stock price prediction[J]. Neural Computing and Applications, 2021, 33(10): 4741-4753.
|
[8] |
RAFI S H, NAHID-AL-MASOOD, DEEBA S R, et al. A short-term load forecasting method using integrated CNN and LSTM network[J]. IEEE Access, 2021, 9: 32436-32448.
|
[9] |
JIA C Y, TIAN Y K, SHI Y H, et al. State of health prediction of lithium-ion batteries based on bidirectional gated recurrent unit and transformer[J]. Energy, 2023, 285: 129401.
|
[10] |
王玉萍, 曾毅, 李胜辉, 等. 一种基于Transformer的三维人体姿态估计方法[J]. 图学学报, 2023, 44(1): 139-145.
DOI
|
|
WANG Y P, ZENG Y, LI S H, et al. A Transformer-based 3D human pose estimation method[J]. Journal of Graphics, 2023, 44(1): 139-145. (in Chinese)
|
[11] |
KIM J, KANG H, KANG P. Time-series anomaly detection with stacked Transformer representations and 1D convolutional network[J]. Engineering Applications of Artificial Intelligence, 2023, 120: 105964.
|
[12] |
LI C, ZHANG Z Z, ZHANG X D, et al. EEG-based emotion recognition via transformer neural architecture search[J]. IEEE Transactions on Industrial Informatics, 2023, 19(4): 6016-6025.
|
[13] |
JIANG Y R, MALLIARAS P, CHEN B, et al. Real-time forecasting of exercise-induced fatigue from wearable sensors[J]. Computers in Biology and Medicine, 2022, 148: 105905.
|
[14] |
LIU Z M, WANG Y X, VAIDYA S, et al. KAN: Kolmogorov-Arnold networks[EB/OL]. [2024-09-21]. https://arxiv.org/abs/2404.19756.pdf.
|
[15] |
KANG T J, LU J M, YU T, et al. Advances in nucleic acid amplification techniques (NAATs): COVID-19 point-of-care diagnostics as an example[J]. Biosensors and Bioelectronics, 2022, 206: 114109.
|
[16] |
QIAN J J, ZHANG Q M, LU M. Integration of on-chip lysis and paper-based sensor for rapid detection of viral and exosomal RNAs[J]. Biosensors and Bioelectronics, 2023, 226: 115114.
|
[17] |
SUN H, JIANG Q H, HUANG Y, et al. Integrated smart analytics of nucleic acid amplification tests via paper microfluidics and deep learning in cloud computing[J]. Biomedical Signal Processing and Control, 2023, 83: 104721.
|
[18] |
SUN H, XIE W T, HUANG Y, et al. Paper microfluidics with deep learning for portable intelligent nucleic acid amplification tests[J]. Talanta, 2023, 258: 124470.
|
[19] |
WANG C J, CHEN Y Y, ZHANG S Q, et al. Stock market index prediction using deep Transformer model[J]. Expert Systems with Applications, 2022, 208: 118128.
|
[20] |
罗智徽, 胡海涛, 马潇峰, 等. 基于同质中间模态的跨模态行人再识别方法[J]. 图学学报, 2024, 45(4): 670-682.
DOI
|
|
LUO Z H, HU H T, MA X F, et al. A network based on the homogeneous middle modality for cross-modality person re-identification[J]. Journal of Graphics, 2024, 45(4): 670-682. (in Chinese)
DOI
|
[21] |
SHAO L, FAN Z Q, LI J, et al. Research on road vehicle detection based on improved Yolov5s[C]// 2022 IEEE International Conference on Mechatronics and Automation. New York: IEEE Press, 2022: 428-433.
|
[22] |
SHAIN E B, CLEMENS J M. A new method for robust quantitative and qualitative analysis of real-time PCR[J]. Nucleic Acids Research, 2008, 36(14): e91.
|
[23] |
CHICCO D, WARRENS M J, JURMAN G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation[J]. Peer J Computer Science, 2021, 7: e623.
|
[24] |
PYO J C, PACHEPSKY Y, KIM S, et al. Long short-term memory models of water quality in inland water environments[J]. Water Research X, 2023, 21: 100207.
|
[25] |
ROSTAMIAN A, O’HARA J G. Event prediction within directional change framework using a CNN-LSTM model[J]. Neural Computing and Applications, 2022, 34(20): 17193-17205.
|
[26] |
LI X, MA Z Q, YUAN Z H, et al. A review on convolutional neural network in rolling bearing fault diagnosis[J]. Measurement Science and Technology, 2024, 35(7): 072002.
|
[27] |
RUIZ-VILLALBA A, RUIJTER J M, VAN DEN HOFF M J B. Use and misuse of Cq in qPCR data analysis and reporting[J]. Life, 2021, 11(6): 496.
|