图学学报 ›› 2025, Vol. 46 ›› Issue (2): 279-287.DOI: 10.11996/JG.j.2095-302X.2025020279
收稿日期:
2024-07-16
接受日期:
2024-12-06
出版日期:
2025-04-30
发布日期:
2025-04-24
第一作者:
郭业才(1962-),男,教授,博士。主要研究方向为机器学习、气象通信技术、水下通信理论及其应用等。E-mail:guo-yecai@163.com
基金资助:
GUO Yecai1,2(), HU Xiaowei1, AMITAVE Saha1, MAO Xiangnan1
Received:
2024-07-16
Accepted:
2024-12-06
Published:
2025-04-30
Online:
2025-04-24
First author:
GUO Yecai (1962-), professor, Ph.D. His main research interests cover machine learning, meteorological communication technology, underwater communication theory and its applications, etc. E-mail:guo-yecai@163.com
Supported by:
摘要:
针对图像去噪特征提取不全面以及特征利用率低,导致生成图像不够清晰的问题,提出一种多尺度密集交互注意力残差去噪网络(MDIARN)。首先,通过多尺度非对称特征提取模块(MAFM)初步提取浅层信息特征,以确保图像特征的多样性;然后,多尺度级联模块(MSCM)利用多维密集交互残差单元(MDIU)对图像特征进行多维映射,并逐步级联以增强模型之间的信息传递和交互性,充分拟合训练数据;引入双路全局注意力模块(DGAM)对多级特征进行全局联合学习,获取更具有判别性的特征信息;跳跃连接促进结构之间的参数共享,使不同维度的特征充分融合,保证信息的完整性;最后,采用残差学习构建出清晰的去噪图像。结果表明,该算法在真实噪声数据集(DND和SIDD)上峰值信噪比分别为39.80 dB和39.62 dB,结构相似性分别为95.4%和95.8%,均优于主流去噪算法。此外,该算法在低光度场景下应用也能保留更多细节,从而显著提升图像质量。
中图分类号:
郭业才, 胡晓伟, 毛湘南. 多尺度密集交互注意力残差真实图像去噪网络[J]. 图学学报, 2025, 46(2): 279-287.
GUO Yecai, HU Xiaowei, AMITAVE Saha, MAO Xiangnan. Multiscale dense interactive attention residual real image denoising network[J]. Journal of Graphics, 2025, 46(2): 279-287.
图2 多尺度非对称特征提取模块((a) MAFM增强骨架特征细节操作;(b) MAFM详细结构)
Fig. 2 Multi-scale asymmetric feature extraction module((a) MAFM enhanced skeleton feature detail operation; (b) Detailed structure of MAFM)
名称 | 配置 |
---|---|
Operating system | Windows 10 |
GPU | NVIDIA GeForce GTX 3060 Ti |
CPU | Intel Core i5- 12400K @3.40 GHz |
Deep learning framework | PyTorch 1.7.1+cu 101 |
Python Version | 3.7 |
表1 环境配置
Table 1 Environment configuration
名称 | 配置 |
---|---|
Operating system | Windows 10 |
GPU | NVIDIA GeForce GTX 3060 Ti |
CPU | Intel Core i5- 12400K @3.40 GHz |
Deep learning framework | PyTorch 1.7.1+cu 101 |
Python Version | 3.7 |
算法 | SIDD | DND | ||
---|---|---|---|---|
PSNR/dB | SSIM/% | PSNR/dB | SSIM/% | |
BM3D | 26.65 | 68.5 | 34.51 | 85.1 |
RIDNet | 38.73 | 95.4 | 39.25 | 95.0 |
AINDNet | 38.96 | 95.2 | 39.37 | 95.1 |
MSGAN | 39.11 | 95.5 | 39.59 | 95.5 |
DCBDNet | 38.94 | 95.3 | 39.37 | 95.1 |
DCANet | 39.27 | 95.6 | 39.57 | 95.3 |
MRIDN | 39.43 | 95.7 | 39.49 | 95.1 |
Ours | 39.62 | 95.8 | 39.80 | 95.4 |
表2 不同算法在SIDD和DND数据集上的去噪对比结果
Table 2 Comparison results of different algorithms for denoising on SIDD and DND datasets
算法 | SIDD | DND | ||
---|---|---|---|---|
PSNR/dB | SSIM/% | PSNR/dB | SSIM/% | |
BM3D | 26.65 | 68.5 | 34.51 | 85.1 |
RIDNet | 38.73 | 95.4 | 39.25 | 95.0 |
AINDNet | 38.96 | 95.2 | 39.37 | 95.1 |
MSGAN | 39.11 | 95.5 | 39.59 | 95.5 |
DCBDNet | 38.94 | 95.3 | 39.37 | 95.1 |
DCANet | 39.27 | 95.6 | 39.57 | 95.3 |
MRIDN | 39.43 | 95.7 | 39.49 | 95.1 |
Ours | 39.62 | 95.8 | 39.80 | 95.4 |
图5 不同算法在SIDD数据集上去噪效果对比
Fig. 5 Comparison of denoising effects of different algorithms on the SIDD dataset ((a) Noisy image; (b) BM3D; (c) RIDNet; (d) DCBDNet; (e) DCANAet; (f) MRIDN; (g) Ours; (h) Clean image)
图6 不同算法在DND数据集上去噪效果对比
Fig. 6 Comparison of denoising effects of different algorithms on the DND dataset ((a) Noisy image; (b) BM3D; (c) RIDNet; (d) DCBDNet; (e) DCANAet; (f) MSGAN; (g) MRIDN; (h) Ours)
图7 不同算法在MIDD数据集上去噪效果对比
Fig. 7 Comparison of denoising effects of different algorithms on the MIDD dataset ((a) Noisy image; (b) BM3D; (c) RIDNet; (d) DCBDNet; (e) DCANAet; (f) MSGAN; (g) Ours; (h) Clean image)
图8 不同算法在手机拍摄的图像上去噪效果对比
Fig. 8 Comparison of denoising effects of different algorithms on images taken by cell phones ((a) Noisy image; (b) BM3D; (c) RIDNet; (d) DCBDNet; (e) AINDNet; (f) DCANAet; (g) MSGAN; (h) Ours)
模块 | 类型 | 参数/M | PSNR/dB | SSIM/% |
---|---|---|---|---|
MAFM | 非对称 | 9.67 | 39.62 | 95.8 |
3×3 Conv | 对称 | 9.60 | 39.53 | 95.5 |
表3 卷积核性能比较
Table 3 Convolutional kernel performance comparison
模块 | 类型 | 参数/M | PSNR/dB | SSIM/% |
---|---|---|---|---|
MAFM | 非对称 | 9.67 | 39.62 | 95.8 |
3×3 Conv | 对称 | 9.60 | 39.53 | 95.5 |
变体 | 模块 | PSNR/dB | SSIM/% | |||
---|---|---|---|---|---|---|
MAFM | MSCM | DGAM | Skip connection | |||
MDIARN-a | √ | - | - | - | 35.36 | 91.0 |
MDIARN-b | √ | √ | - | - | 39.45 | 95.4 |
MDIARN-c | √ | - | √ | - | 37.53 | 94.0 |
MDIARN-d | √ | √ | √ | - | 39.54 | 95.7 |
MDIARN-e | √ | √ | - | √ | 39.53 | 95.7 |
Ours | √ | √ | √ | √ | 39.62 | 95.8 |
表4 消融实验结果
Table 4 Results of ablation experiments
变体 | 模块 | PSNR/dB | SSIM/% | |||
---|---|---|---|---|---|---|
MAFM | MSCM | DGAM | Skip connection | |||
MDIARN-a | √ | - | - | - | 35.36 | 91.0 |
MDIARN-b | √ | √ | - | - | 39.45 | 95.4 |
MDIARN-c | √ | - | √ | - | 37.53 | 94.0 |
MDIARN-d | √ | √ | √ | - | 39.54 | 95.7 |
MDIARN-e | √ | √ | - | √ | 39.53 | 95.7 |
Ours | √ | √ | √ | √ | 39.62 | 95.8 |
数量 | 参数/M | PSNR/dB | SSIM/% |
---|---|---|---|
1 | 2.68 | 39.25 | 95.5 |
2 | 5.01 | 39.43 | 95.7 |
3 | 7.34 | 39.50 | 95.7 |
4 | 9.67 | 39.62 | 95.8 |
5 | 12.00 | 39.64 | 95.8 |
表5 MSCM数量性能比较
Table 5 Performance comparison of the number of MSCM
数量 | 参数/M | PSNR/dB | SSIM/% |
---|---|---|---|
1 | 2.68 | 39.25 | 95.5 |
2 | 5.01 | 39.43 | 95.7 |
3 | 7.34 | 39.50 | 95.7 |
4 | 9.67 | 39.62 | 95.8 |
5 | 12.00 | 39.64 | 95.8 |
数量 | 参数/M | PSNR/dB | SSIM/% |
---|---|---|---|
3 | 4.14 | 39.39 | 95.3 |
4 | 6.66 | 39.53 | 95.5 |
5 | 9.67 | 39.62 | 95.8 |
6 | 13.28 | 39.63 | 95.8 |
7 | 17.47 | 39.64 | 95.8 |
表6 MDIU中卷积数量性能对比
Table 6 Performance comparison of the number of convolutions in MDIU
数量 | 参数/M | PSNR/dB | SSIM/% |
---|---|---|---|
3 | 4.14 | 39.39 | 95.3 |
4 | 6.66 | 39.53 | 95.5 |
5 | 9.67 | 39.62 | 95.8 |
6 | 13.28 | 39.63 | 95.8 |
7 | 17.47 | 39.64 | 95.8 |
方法 | 时间/s | 参数/M |
---|---|---|
BM3D | 2.165(CPU) | - |
RIDNet | 0.046(GPU) | 1.50 |
DCBDNet | 0.054(GPU) | 1.10 |
DCANet | 0.059(GPU) | 1.40 |
AINDNet | 0.085(GPU) | 13.76 |
MRIDN | 0.051(GPU) | 6.92 |
Ours | 0.048(GPU) | 9.67 |
表7 不同模型在一个256×256噪声图像上运行的时间以及模型参数数量
Table 7 Runtimes and model parameters for different models on a 256×256 noisy image
方法 | 时间/s | 参数/M |
---|---|---|
BM3D | 2.165(CPU) | - |
RIDNet | 0.046(GPU) | 1.50 |
DCBDNet | 0.054(GPU) | 1.10 |
DCANet | 0.059(GPU) | 1.40 |
AINDNet | 0.085(GPU) | 13.76 |
MRIDN | 0.051(GPU) | 6.92 |
Ours | 0.048(GPU) | 9.67 |
[1] | SOLOMON C, BRECKON T. Fundamentals of digital image processing: a practical approach with examples in MATLAB[M]. Hoboken: Wiley-Blackwell, 2011: 6-7. |
[2] |
AFONSO M V, BIOUCAS-DIAS J M, FIGUEIREDO M A T. Fast image recovery using variable splitting and constrained optimization[J]. IEEE Transactions on Image Processing, 2010, 19(9): 2345-2356.
DOI PMID |
[3] |
DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095.
DOI PMID |
[4] | ANWAR S, BARNES N. Real image denoising with feature attention[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 3155-3164. |
[5] | YAO C, TANG Y B, SUN J, et al. Multiscale residual fusion network for image denoising[J]. IET Image Processing, 2022, 16(3): 878-887. |
[6] | 吴文聪. 基于卷积神经网络的图像去噪方法研究[D]. 昆明: 云南师范大学, 2023. |
WU W C. Research on convolutional neural network for image denoising[D]. Kunming: Yunnan Normal University, 2023 (in Chinese). | |
[7] | YU X J, FU Z X, GE C K. A multi-scale generative adversarial network for real-world image denoising[J]. Signal, Image and Video Processing, 2022, 16(1): 257-264. |
[8] | DING X H, GUO Y C, DING G G, et al. ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 1911-1920. |
[9] | HEIDE F, STEINBERGER M, TSAI Y T, et al. FlexISP: a flexible camera image processing framework[J]. ACM Transactions on Graphics, 2014, 33(6): 231. |
[10] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// The 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19. |
[11] | 满开亮, 汪友生, 刘继荣. 基于稠密残差网络的图像超分辨率重建算法[J]. 图学学报, 2021, 42(4): 556-562. |
MAN K L, WANG Y S, LIU J R. Image super-resolution reconstruction algorithm based on dense residual network[J]. Journal of Graphics, 2021, 42(4): 556-562 (in Chinese). | |
[12] |
CRNJANSKI J, KRSTIĆ M, TOTOVIĆ A, et al. Adaptive sigmoid-like and PReLU activation functions for all-optical perceptron[J]. Optics Letters, 2021, 46(9): 2003-2006.
DOI PMID |
[13] | JIANG D C, QU H, ZHAO J H, et al. Aggregating multi-scale contextual features from multiple stages for semantic image segmentation[J]. Connection Science, 2021, 33(3): 605-622. |
[14] | HE X, CHEN Y S. Modifications of the multi-layer perceptron for hyperspectral image classification[J]. Remote Sensing, 2021, 13(17): 3547. |
[15] |
魏敏, 姚鑫. 基于多尺度与注意力机制的两阶段风暴单体外推研究[J]. 图学学报, 2024, 45(4): 696-704.
DOI |
WEI M, YAO X. Two-stage storm entity prediction based on multiscale and attention[J]. Journal of Graphics, 2024, 45(4): 696-704 (in Chinese).
DOI |
|
[16] | CHARBONNIER P, BLANC-FERAUD L, AUBERT G, et al. Two deterministic half-quadratic regularization algorithms for computed imaging[C]// The 1st International Conference on Image Processing. New York: IEEE Press, 1994: 168-172. |
[17] | JIANG K, WANG Z Y, YI P, et al. Multi-scale progressive fusion network for single image deraining[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 8343-8352. |
[18] | ABDELHAMED A, LIN S, BROWN M S. A high-quality denoising dataset for smartphone cameras[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 1692-1700. |
[19] | PLÖTZ T, ROTH S. Benchmarking denoising algorithms with real photographs[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 2750-2759. |
[20] | FLEPP R, IGNATOV A, TIMOFTE R, et al. Real-world mobile image denoising dataset with efficient baselines[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2024: 22368-22377. |
[21] | 佟雨兵, 张其善, 祁云平. 基于PSNR与SSIM联合的图像质量评价模型[J]. 中国图象图形学报, 2006, 11(12): 1758-1763. |
TONG Y B, ZHANG Q S, QI Y P. Image quality assessing by combining PSNR with SSIM[J]. Journal of Image and Graphics, 2006, 11(12): 1758-1763 (in Chinese). | |
[22] | CAZENAVE T, SENTUC J, VIDEAU M. Cosine annealing, Mixnet and Swish activation for computer go[C]// The 17th International Conference on Advances in Computer Games. Cham: Springer, 2022: 53-60. |
[23] |
常禧龙, 梁琨, 李文涛. 深度学习优化器进展综述[J]. 计算机工程与应用, 2024, 60(7): 1-12.
DOI |
CHANG X L, LIANG K, LI W T. Review of development of deep Learning optimizer[J]. Computer Engineering and Applications, 2024, 60(7): 1-12 (in Chinese).
DOI |
|
[24] | KIM Y, SOH J W, PARK G Y, et al. Transfer learning from synthetic to real-noise denoising with adaptive instance normalization[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 3479-3489. |
[25] |
冯妍舟, 刘建霞, 王海翼, 等. 基于多级残差信息蒸馏的真实图像去噪方法[J]. 计算机工程, 2024, 50(3): 216-223.
DOI |
FENG Y Z, LIU J X, WANG H Y, et al. Real image denoising method based on multi-level residual information distillation[J]. Computer Engineering, 2024, 50(3): 216-223 (in Chinese).
DOI |
[1] | 张立立, 杨康, 张珂, 魏薇, 李晶, 谭洪鑫, 张翔宇. 面向柴油车辆排放黑烟的改进型YOLOv8检测算法研究[J]. 图学学报, 2025, 46(2): 249-258. |
[2] | 崔克彬, 耿佳昌. 基于EE-YOLOv8s的多场景火灾迹象检测算法[J]. 图学学报, 2025, 46(1): 13-27. |
[3] | 吴亦奇, 何嘉乐, 张甜甜, 张德军, 李艳丽, 陈壹林. 基于多重特征提取和点对应关系的三维点云非刚配准[J]. 图学学报, 2025, 46(1): 150-158. |
[4] | 陈冠豪, 徐丹, 贺康建, 施洪贞, 张浩. 基于转置注意力和CNN的图像超分辨率重建网络[J]. 图学学报, 2025, 46(1): 35-46. |
[5] | 张文祥, 王夏黎, 王欣仪, 杨宗宝. 一种强化伪造区域关注的深度伪造人脸检测方法[J]. 图学学报, 2025, 46(1): 47-58. |
[6] | 苑朝, 赵明雪, 张丰羿, 冯晓勇, 李冰, 陈瑞. 基于点云特征增强的复杂室内场景3D目标检测[J]. 图学学报, 2025, 46(1): 59-69. |
[7] | 卢洋, 陈林慧, 姜晓恒, 徐明亮. SDENet:基于多尺度注意力质量感知的合成缺陷数据评价网络[J]. 图学学报, 2025, 46(1): 94-103. |
[8] | 胡凤阔, 叶兰, 谭显峰, 张钦展, 胡志新, 方清, 王磊, 满孝锋. 一种基于改进YOLOv8的轻量化路面病害检测算法[J]. 图学学报, 2024, 45(5): 892-900. |
[9] | 刘义艳, 郝婷楠, 贺晨, 常英杰. 基于DBBR-YOLO的光伏电池表面缺陷检测[J]. 图学学报, 2024, 45(5): 913-921. |
[10] | 吴沛宸, 袁立宁, 胡皓, 刘钊, 郭放. 基于注意力特征融合的视频异常行为检测[J]. 图学学报, 2024, 45(5): 922-929. |
[11] | 翟永杰, 李佳蔚, 陈年昊, 王乾铭, 王新颖. 融合改进Transformer的车辆部件检测方法[J]. 图学学报, 2024, 45(5): 930-940. |
[12] | 刘丽, 张起凡, 白宇昂, 黄凯烨. 结合Swin Transformer的多尺度遥感图像变化检测研究[J]. 图学学报, 2024, 45(5): 941-956. |
[13] | 章东平, 魏杨悦, 何数技, 徐云超, 胡海苗, 黄文君. 特征融合与层间传递:一种基于Anchor DETR改进的目标检测方法[J]. 图学学报, 2024, 45(5): 968-978. |
[14] | 谢国波, 林松泽, 林志毅, 吴陈锋, 梁立辉. 基于改进YOLOv7-tiny的道路病害检测算法[J]. 图学学报, 2024, 45(5): 987-997. |
[15] | 熊超, 王云艳, 罗雨浩. 特征对齐与上下文引导的多视图三维重建[J]. 图学学报, 2024, 45(5): 1008-1016. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||