欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (6): 1304-1315.DOI: 10.11996/JG.j.2095-302X.2025061304

• 图像处理与计算机视觉 • 上一篇    下一篇

基于退化分离的轻量级盲超分辨率重建网络

樊乐翔(), 马冀, 周登文()   

  1. 华北电力大学控制与计算机工程学院北京 102206
  • 收稿日期:2025-03-04 接受日期:2025-06-09 出版日期:2025-12-30 发布日期:2025-12-27
  • 通讯作者:周登文(1965-),男,教授,硕士。主要研究方向为图像去噪、图像去马赛克、图像插值和图像超分辨率等。E-mail:zdw@ncepu.edu.cn
  • 第一作者:樊乐翔(2001-),女,硕士研究生。主要研究方向为计算机视觉与图像超分辨率。E-mail:120232227379@ncepu.edu.cn

Lightweight blind super-resolution network based on degradation separation

FAN Lexiang(), MA Ji, ZHOU Dengwen()   

  1. School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
  • Received:2025-03-04 Accepted:2025-06-09 Published:2025-12-30 Online:2025-12-27
  • First author:FAN Lexiang (2001-), master student. Her main research interests cover computer vision and image super-resolution. E-mail:120232227379@ncepu.edu.cn

摘要:

盲图像超分辨率(SR)问题旨在从退化模式未知的低分辨率(LR)图像中恢复高分辨率(HR)图像。当前,大多方法主要通过估计模糊核对图像退化过程进行显式建模。然而,现实世界中的图像退化情况复杂、多样,以显式建模方式很难全面涵盖多种退化。隐式建模虽在处理复杂退化时更具成效,但模型结构较为复杂,且参数量庞大,这不仅导致了高昂的计算成本,还使得模型的稳定性欠佳。为此提出了一种基于退化分离的轻量级盲超分辨率重建(BDSSR)方法,通过隐式学习机制实现高效重建。BDSSR的核心框架由退化因子消除器(DFE)和特征融合SR(FFSR)网络组成。DFE将含复杂退化的图像分离为仅含双三次下采样的清晰LR图像和非双三次退化特征(如噪声、模糊)。其中,清晰LR图像为SR过程提供优质输入,减少噪声与模糊干扰;分离出的退化特征则通过特征调制系数与SR网络融合,实现对网络权重的自适应调整,引导模型聚焦高频细节的精细化重建。FFSR进一步采用多尺度卷积策略,通过跨尺度特征的高效融合增强对图像内容的捕捉能力,从而生成丰富逼真的细节,在轻量化架构下实现了对复杂退化的鲁棒性。实验结果显示,BDSSR在多个标准数据集上表现出优越的性能。以 Urban100数据集为例,在×2和×4放大倍数下,BDSSR的PSNR值分别比DASR提高了0.97 dB和0.47 dB,SSIM值提升了0.012 2和0.015 8,其参数量仅为1.7 M,约为DASR的3/10,不仅提供了新的理论视角,还在实际应用中具有广泛前景,为盲超分辨率技术的发展贡献了新思路和工具。

关键词: 盲超分辨率, 退化因子消除, 特征融合, 双三次下采样, 深度学习

Abstract:

The blind image super-resolution (SR) problem is concerned with recovering high-resolution (HR) images from low-resolution (LR) images with unknown degradation patterns. Currently, most existing methods primarily use explicit modeling to estimate blur kernels for characterizing image degradation processes. However, real-world image degradation is complex and diverse, making explicit modeling unable to fully cover multiple degradation types. Although implicit modeling is more effective in handling complex degradations, its model structures are often complicated with huge parameter sizes, leading to high computational costs and poor model stability. To address these issues, a lightweight blind SR reconstruction method named BDSSR was proposed, achieving efficient reconstruction through an implicit learning mechanism. The core framework of BDSSR consisted of a degradation factor eliminator (DFE) and a feature-fusion SR (FFSR) network. The DFE separated images with complex degradations into a clear LR image containing only bicubic down-sampling and non-bicubic degradation features such as noise and blur. Specifically, the clear LR image was provided as high-quality input for the SR process, reducing noise and blur interferences; the separated degradation features were fused into the SR network through feature-modulation coefficients to adaptively adjust the network weights, guiding the model to focus on the fine-grained reconstruction of high-frequency details. The FFSR further employed a multi-scale convolution strategy to enhance the capture capability of image content through efficient fusion of cross-scale features, thereby generating rich and realistic details and enabling robust modeling of complex degradations within a lightweight architecture. Experimental results demonstrated that BDSSR exhibited superior performance on multiple standard datasets. Taking the Urban100 dataset as an example, at ×2 and ×4 magnification factors, BDSSR improved the PSNR values by 0.97 dB and 0.47 dB, respectively, compared to DASR, with SSIM values increased by 0.012 2 and 0.015 8. Additionally, its parameter count was only 1.7 M, approximately 3/10 of that of DASR. This method provided a new theoretical perspective, and broad application prospects in practical scenarios were demonstrated, contributing novel ideas and tools to the development of blind super-resolution technology.

Key words: blind super-resolution, degradation factor elimination, feature fusion, bicubic downsampling, deep learning

中图分类号: