图学学报 ›› 2025, Vol. 46 ›› Issue (6): 1304-1315.DOI: 10.11996/JG.j.2095-302X.2025061304
收稿日期:2025-03-04
接受日期:2025-06-09
出版日期:2025-12-30
发布日期:2025-12-27
通讯作者:周登文(1965-),男,教授,硕士。主要研究方向为图像去噪、图像去马赛克、图像插值和图像超分辨率等。E-mail:zdw@ncepu.edu.cn第一作者:樊乐翔(2001-),女,硕士研究生。主要研究方向为计算机视觉与图像超分辨率。E-mail:120232227379@ncepu.edu.cn
FAN Lexiang(
), MA Ji, ZHOU Dengwen(
)
Received:2025-03-04
Accepted:2025-06-09
Published:2025-12-30
Online:2025-12-27
First author:FAN Lexiang (2001-), master student. Her main research interests cover computer vision and image super-resolution. E-mail:120232227379@ncepu.edu.cn
摘要:
盲图像超分辨率(SR)问题旨在从退化模式未知的低分辨率(LR)图像中恢复高分辨率(HR)图像。当前,大多方法主要通过估计模糊核对图像退化过程进行显式建模。然而,现实世界中的图像退化情况复杂、多样,以显式建模方式很难全面涵盖多种退化。隐式建模虽在处理复杂退化时更具成效,但模型结构较为复杂,且参数量庞大,这不仅导致了高昂的计算成本,还使得模型的稳定性欠佳。为此提出了一种基于退化分离的轻量级盲超分辨率重建(BDSSR)方法,通过隐式学习机制实现高效重建。BDSSR的核心框架由退化因子消除器(DFE)和特征融合SR(FFSR)网络组成。DFE将含复杂退化的图像分离为仅含双三次下采样的清晰LR图像和非双三次退化特征(如噪声、模糊)。其中,清晰LR图像为SR过程提供优质输入,减少噪声与模糊干扰;分离出的退化特征则通过特征调制系数与SR网络融合,实现对网络权重的自适应调整,引导模型聚焦高频细节的精细化重建。FFSR进一步采用多尺度卷积策略,通过跨尺度特征的高效融合增强对图像内容的捕捉能力,从而生成丰富逼真的细节,在轻量化架构下实现了对复杂退化的鲁棒性。实验结果显示,BDSSR在多个标准数据集上表现出优越的性能。以 Urban100数据集为例,在×2和×4放大倍数下,BDSSR的PSNR值分别比DASR提高了0.97 dB和0.47 dB,SSIM值提升了0.012 2和0.015 8,其参数量仅为1.7 M,约为DASR的3/10,不仅提供了新的理论视角,还在实际应用中具有广泛前景,为盲超分辨率技术的发展贡献了新思路和工具。
中图分类号:
樊乐翔, 马冀, 周登文. 基于退化分离的轻量级盲超分辨率重建网络[J]. 图学学报, 2025, 46(6): 1304-1315.
FAN Lexiang, MA Ji, ZHOU Dengwen. Lightweight blind super-resolution network based on degradation separation[J]. Journal of Graphics, 2025, 46(6): 1304-1315.
图3 Set5数据集上×4 SR模型的PSNR、参数数量及计算量比较((a) PSNR和模型参数量的比较;(b) 计算量和模型参数量的比较)
Fig. 3 Comparison of PSNR, parameter count, and computational cost for ×4 SR models on the Set5 dataset ((a) Comparison of PSNR and model parameters; (b) Comparison of computational complexity and model parameters)
图4 BDSSR网络架构((a) 退化因子消除器(DFE);(b) 特征融合超分辨率网络(FFSR))
Fig. 4 Architecture of the BDSSR network ((a) Degradation factor eliminator; (b) Feature fusion super resolution network)
| 方法 | 参数 量/M | 性能 指标 | Set5 | Set14 | B100 | Urban100 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.6 | 1.2 | 1.8 | 0.6 | 1.2 | 1.8 | 0.6 | 1.2 | 1.8 | 0.6 | 1.2 | 1.8 | |||
| Bicubic | PSNR | 32.67 | 30.32 | 28.26 | 29.54 | 27.70 | 26.11 | 28.88 | 27.35 | 26.07 | 26.18 | 24.59 | 23.23 | |
| SSIM | 0.916 5 | 0.873 2 | 0.818 3 | 0.847 1 | 0.783 4 | 0.715 4 | 0.817 1 | 0.748 0 | 0.679 5 | 0.815 2 | 0.745 8 | 0.672 4 | ||
| EDSR | 43.0 | PSNR | 35.90 | 31.21 | 28.51 | 32.26 | 28.48 | 26.33 | 31.15 | 28.04 | 26.26 | 29.78 | 25.39 | 23.44 |
| SSIM | ||||||||||||||
| SwinIR | 11.9 | PSNR | 35.99 | 31.21 | 28.50 | 32.43 | 28.49 | 26.33 | 31.24 | 28.05 | 26.26 | 30.02 | 25.39 | 23.44 |
| SSIM | 0.951 2 | 0.893 9 | 0.826 8 | 0.904 0 | 0.814 6 | 0.726 3 | 0.879 6 | 0.781 6 | 0.690 6 | 0.908 2 | 0.784 6 | 0.685 8 | ||
| DCT | 0.7 | PSNR | 35.89 | 31.20 | 28.51 | 32.27 | 28.48 | 26.33 | 31.13 | 28.03 | 26.26 | 29.7255 | 25.38 | 23.44 |
| SSIM | 0.950 2 | 0.893 6 | 0.827 1 | 0.901 1 | 0.814 0 | 0.726 6 | 0.877 4 | 0.780 6 | 0.690 7 | 0.902 0 | 0.783 8 | 0.685 9 | ||
| BSRGAN | 16.7 | PSNR | 32.29 | 32.32 | 31.82 | 29.66 | 29.54 | 28.94 | 29.27 | 28.94 | 28.22 | 27.11 | 26.74 | 26.07 |
| SSIM | 0.911 9 | 0.907 1 | 0.894 0 | 0.848 3 | 0.834 9 | 0.807 7 | 0.821 7 | 0.803 9 | 0.769 2 | 0.846 7 | 0.831 6 | 0.805 0 | ||
| KOALAnet | 18.6 | PSNR | 36.27 | 35.23 | 32.77 | 32.37 | 31.81 | 30.06 | 31.38 | 30.84 | 29.32 | 29.77 | 29.10 | 27.49 |
| SSIM | 0.954 8 | 0.944 8 | 0.915 2 | 0.907 0 | 0.891 4 | 0.840 6 | 0.887 6 | 0.869 4 | 0.816 4 | 0.903 0 | 0.888 0 | 0.8460 0 | ||
| IKC | 5.3 | PSNR | 37.42 | 36.83 | 34.67 | 33.43 | 32.86 | 30.67 | 31.93 | 31.60 | 29.70 | 30.92 | 29.90 | 27.03 |
| SSIM | 0.957 9 | 0.953 0 | 0.928 5 | 0.913 6 | 0.906 0 | 0.855 6 | 0.891 8 | 0.883 5 | 0.823 8 | 0.914 3 | 0.896 0 | 0.829 0 | ||
| IDMBSR | 4.2 | PSNR | 37.91 | 37.35 | 35.72 | 33.48 | 33.40 | 32.12 | 32.14 | 32.02 | 30.84 | 31.53 | 31.18 | 29.74 |
| SSIM | 0.958 8 | 0.956 0 | 0.941 1 | 0.915 3 | 0.911 1 | 0.883 9 | 0.898 7 | 0.894 5 | 0.861 5 | 0.921 2 | 0.915 2 | 0.888 8 | ||
| DAN | 4.3 | PSNR | 37.83 | 37.46 | 35.79 | 33.33 | 33.20 | 31.81 | 32.05 | 31.87 | 30.54 | 31.13 | 30.71 | 29.04 |
| SSIM | 0.958 4 | 0.953 9 | 0.928 0 | 0.912 8 | 0.906 9 | 0.874 1 | 0.894 4 | 0.889 0 | 0.852 7 | 0.915 5 | 0.908 3 | 0.875 4 | ||
| DASR | 5.8 | PSNR | 37.43 | 37.21 | 35.49 | 32.95 | 32.77 | 31.61 | 31.79 | 31.72 | 30.58 | 30.73 | 30.39 | 29.02 |
| SSIM | 0.955 9 | 0.952 3 | 0.938 0 | 0.906 2 | 0.899 4 | 0.872 1 | 0.887 7 | 0.885 4 | 0.851 1 | 0.910 0 | 0.904 8 | 0.875 0 | ||
| EBSR | PSNR | 37.86 | 37.49 | 35.83 | 33.07 | 32.99 | 31.74 | 31.92 | 31.88 | 30.70 | 30.97 | 30.82 | 29.51 | |
| SSIM | ||||||||||||||
| SASR | PSNR | 37.73 | 37.22 | 35.57 | 33.17 | 32.96 | 31.78 | 31.94 | 31.78 | 30.67 | ||||
| SSIM | ||||||||||||||
| DCCL | 5.5 | PSNR | 37.74 | 37.32 | 35.65 | 33.37 | 33.17 | 31.63 | 32.12 | 31.98 | 30.74 | 31.58 | 31.11 | 29.44 |
| SSIM | 0.958 1 | 0.952 9 | 0.936 7 | 0.915 3 | 0.908 7 | 0.864 8 | 0.898 7 | 0.893 0 | 0.857 2 | 0.923 3 | 0.916 4 | 0.879 0 | ||
| BDSSR | 1.7 | PSNR | 38.01 | 37.63 | 36.01 | 33.52 | 33.42 | 32.05 | 32.21 | 32.09 | 30.86 | 31.70 | 31.27 | 29.61 |
| SSIM | 0.958 7 | 0.955 3 | 0.940 5 | 0.913 8 | 0.908 9 | 0.881 1 | 0.897 9 | 0.899 3 | 0.856 8 | 0.922 2 | 0.915 2 | 0.884 9 | ||
表1 各向同性高斯模糊下不同方法的PSNR和SSIM性能比较(×2 SR)
Table 1 Comparison of PSNR and SSIM performance of different methods under isotropic Gaussian blur for ×2 SR
| 方法 | 参数 量/M | 性能 指标 | Set5 | Set14 | B100 | Urban100 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.6 | 1.2 | 1.8 | 0.6 | 1.2 | 1.8 | 0.6 | 1.2 | 1.8 | 0.6 | 1.2 | 1.8 | |||
| Bicubic | PSNR | 32.67 | 30.32 | 28.26 | 29.54 | 27.70 | 26.11 | 28.88 | 27.35 | 26.07 | 26.18 | 24.59 | 23.23 | |
| SSIM | 0.916 5 | 0.873 2 | 0.818 3 | 0.847 1 | 0.783 4 | 0.715 4 | 0.817 1 | 0.748 0 | 0.679 5 | 0.815 2 | 0.745 8 | 0.672 4 | ||
| EDSR | 43.0 | PSNR | 35.90 | 31.21 | 28.51 | 32.26 | 28.48 | 26.33 | 31.15 | 28.04 | 26.26 | 29.78 | 25.39 | 23.44 |
| SSIM | ||||||||||||||
| SwinIR | 11.9 | PSNR | 35.99 | 31.21 | 28.50 | 32.43 | 28.49 | 26.33 | 31.24 | 28.05 | 26.26 | 30.02 | 25.39 | 23.44 |
| SSIM | 0.951 2 | 0.893 9 | 0.826 8 | 0.904 0 | 0.814 6 | 0.726 3 | 0.879 6 | 0.781 6 | 0.690 6 | 0.908 2 | 0.784 6 | 0.685 8 | ||
| DCT | 0.7 | PSNR | 35.89 | 31.20 | 28.51 | 32.27 | 28.48 | 26.33 | 31.13 | 28.03 | 26.26 | 29.7255 | 25.38 | 23.44 |
| SSIM | 0.950 2 | 0.893 6 | 0.827 1 | 0.901 1 | 0.814 0 | 0.726 6 | 0.877 4 | 0.780 6 | 0.690 7 | 0.902 0 | 0.783 8 | 0.685 9 | ||
| BSRGAN | 16.7 | PSNR | 32.29 | 32.32 | 31.82 | 29.66 | 29.54 | 28.94 | 29.27 | 28.94 | 28.22 | 27.11 | 26.74 | 26.07 |
| SSIM | 0.911 9 | 0.907 1 | 0.894 0 | 0.848 3 | 0.834 9 | 0.807 7 | 0.821 7 | 0.803 9 | 0.769 2 | 0.846 7 | 0.831 6 | 0.805 0 | ||
| KOALAnet | 18.6 | PSNR | 36.27 | 35.23 | 32.77 | 32.37 | 31.81 | 30.06 | 31.38 | 30.84 | 29.32 | 29.77 | 29.10 | 27.49 |
| SSIM | 0.954 8 | 0.944 8 | 0.915 2 | 0.907 0 | 0.891 4 | 0.840 6 | 0.887 6 | 0.869 4 | 0.816 4 | 0.903 0 | 0.888 0 | 0.8460 0 | ||
| IKC | 5.3 | PSNR | 37.42 | 36.83 | 34.67 | 33.43 | 32.86 | 30.67 | 31.93 | 31.60 | 29.70 | 30.92 | 29.90 | 27.03 |
| SSIM | 0.957 9 | 0.953 0 | 0.928 5 | 0.913 6 | 0.906 0 | 0.855 6 | 0.891 8 | 0.883 5 | 0.823 8 | 0.914 3 | 0.896 0 | 0.829 0 | ||
| IDMBSR | 4.2 | PSNR | 37.91 | 37.35 | 35.72 | 33.48 | 33.40 | 32.12 | 32.14 | 32.02 | 30.84 | 31.53 | 31.18 | 29.74 |
| SSIM | 0.958 8 | 0.956 0 | 0.941 1 | 0.915 3 | 0.911 1 | 0.883 9 | 0.898 7 | 0.894 5 | 0.861 5 | 0.921 2 | 0.915 2 | 0.888 8 | ||
| DAN | 4.3 | PSNR | 37.83 | 37.46 | 35.79 | 33.33 | 33.20 | 31.81 | 32.05 | 31.87 | 30.54 | 31.13 | 30.71 | 29.04 |
| SSIM | 0.958 4 | 0.953 9 | 0.928 0 | 0.912 8 | 0.906 9 | 0.874 1 | 0.894 4 | 0.889 0 | 0.852 7 | 0.915 5 | 0.908 3 | 0.875 4 | ||
| DASR | 5.8 | PSNR | 37.43 | 37.21 | 35.49 | 32.95 | 32.77 | 31.61 | 31.79 | 31.72 | 30.58 | 30.73 | 30.39 | 29.02 |
| SSIM | 0.955 9 | 0.952 3 | 0.938 0 | 0.906 2 | 0.899 4 | 0.872 1 | 0.887 7 | 0.885 4 | 0.851 1 | 0.910 0 | 0.904 8 | 0.875 0 | ||
| EBSR | PSNR | 37.86 | 37.49 | 35.83 | 33.07 | 32.99 | 31.74 | 31.92 | 31.88 | 30.70 | 30.97 | 30.82 | 29.51 | |
| SSIM | ||||||||||||||
| SASR | PSNR | 37.73 | 37.22 | 35.57 | 33.17 | 32.96 | 31.78 | 31.94 | 31.78 | 30.67 | ||||
| SSIM | ||||||||||||||
| DCCL | 5.5 | PSNR | 37.74 | 37.32 | 35.65 | 33.37 | 33.17 | 31.63 | 32.12 | 31.98 | 30.74 | 31.58 | 31.11 | 29.44 |
| SSIM | 0.958 1 | 0.952 9 | 0.936 7 | 0.915 3 | 0.908 7 | 0.864 8 | 0.898 7 | 0.893 0 | 0.857 2 | 0.923 3 | 0.916 4 | 0.879 0 | ||
| BDSSR | 1.7 | PSNR | 38.01 | 37.63 | 36.01 | 33.52 | 33.42 | 32.05 | 32.21 | 32.09 | 30.86 | 31.70 | 31.27 | 29.61 |
| SSIM | 0.958 7 | 0.955 3 | 0.940 5 | 0.913 8 | 0.908 9 | 0.881 1 | 0.897 9 | 0.899 3 | 0.856 8 | 0.922 2 | 0.915 2 | 0.884 9 | ||
| 方法 | 参数 量/M | 性能 指标 | Set5 | Set14 | B100 | Urban100 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1.2 | 2.4 | 3.6 | 1.2 | 2.4 | 3.6 | 1.2 | 2.4 | 3.6 | 1.2 | 2.4 | 3.6 | |||
| Bicubic | PSNR | 27.69 | 25.99 | 24.45 | 25.60 | 24.39 | 23.25 | 25.58 | 24.67 | 23.80 | 22.73 | 21.76 | 20.84 | |
| SSIM | 0.790 4 | 0.735 1 | 0.677 4 | 0.682 0 | 0.629 2 | 0.581 1 | 0.646 1 | 0.598 2 | 0.557 0 | 0.634 1 | 0.579 1 | 0.530 5 | ||
| EDSR | 43.0 | PSNR | 30.24 | 26.72 | 24.67 | 27.47 | 24.93 | 23.42 | 26.86 | 25.09 | 23.94 | 24.69 | 22.25 | 20.99 |
| SSIM | ||||||||||||||
| SwinIR | 11.9 | PSNR | 30.43 | 26.72 | 24.67 | 27.57 | 24.94 | 23.42 | 26.96 | 25.10 | 23.93 | 24.86 | 22.26 | 20.99 |
| SSIM | 0.867 5 | 0.766 0 | 0.688 2 | 0.754 4 | 0.656 8 | 0.589 6 | 0.710 0 | 0.622 4 | 0.564 1 | 0.746 8 | 0.612 9 | 0.540 1 | ||
| DCT | 0.7 | PSNR | 30.20 | 26.71 | 24.67 | 27.44 | 24.94 | 23.42 | 26.87 | 25.09 | 23.93 | 24.63 | 22.25 | 20.98 |
| SSIM | 0.862 8 | 0.766 0 | 0.688 3 | 0.749 6 | 0.656 6 | 0.589 8 | 0.705 9 | 0.622 0 | 0.564 1 | 0.735 1 | 0.612 3 | 0.540 0 | ||
| BSRGAN | 16.7 | PSNR | 27.87 | 27.59 | 26.72 | 25.98 | 25.74 | 24.97 | 25.62 | 25.39 | 24.80 | 23.39 | 23.09 | 22.40 |
| SSIM | 0.806 0 | 0.789 3 | 0.757 9 | 0.687 7 | 0.666 8 | 0.633 3 | 0.647 4 | 0.626 8 | 0.593 1 | 0.691 9 | 0.663 6 | 0.621 7 | ||
| KOALAnet | 18.6 | PSNR | 30.19 | 28.63 | 26.19 | 27.70 | 26.70 | 24.92 | 27.21 | 27.23 | 25.98 | 24.88 | 24.35 | 22.86 |
| SSIM | 0.868 8 | 0.827 5 | 0.747 0 | 0.756 7 | 0.720 8 | 0.650 9 | 0.729 6 | 0.723 0 | 0.655 2 | 0.749 9 | 0.722 9 | 0.642 5 | ||
| IKC | 5.3 | PSNR | 31.76 | 30.35 | 30.26 | 28.44 | 28.17 | 26.63 | 27.43 | 27.28 | 26.41 | 25.63 | 25.02 | 24.07 |
| SSIM | 0.887 0 | 0.857 4 | 0.858 4 | 0.771 4 | 0.760 6 | 0.710 0 | 0.724 0 | 0.716 4 | 0.685 4 | 0.767 6 | 0.742 7 | 0.702 4 | ||
| IDMBSR | 4.2 | PSNR | 31.90 | 31.78 | 30.68 | 28.50 | 28.36 | 27.60 | 27.58 | 27.51 | 26.90 | 25.91 | 25.68 | 24.91 |
| SSIM | 0.890 3 | 0.886 0 | 0.862 4 | 0.777 0 | 0.770 6 | 0.736 4 | 0.733 4 | 0.727 8 | 0.695 8 | 0.778 0 | 0.768 0 | 0.733 0 | ||
| DAN | 4.3 | PSNR | 32.22 | 31.96 | 30.94 | 28.65 | 28.54 | 27.68 | 27.64 | 27.58 | 26.95 | 26.20 | 25.96 | 25.08 |
| SSIM | 0.893 6 | 0.888 1 | 0.865 9 | 0.779 5 | 0.772 4 | 0.737 2 | 0.734 3 | 0.728 2 | 0.695 0 | 0.786 6 | 0.775 8 | 0.739 4 | ||
| DASR | 5.8 | PSNR | 31.92 | 31.75 | 30.59 | 28.44 | 28.28 | 27.45 | 27.52 | 27.43 | 26.83 | 25.69 | 25.44 | 24.66 |
| SSIM | 0.890 4 | 0.885 5 | 0.860 1 | 0.773 1 | 0.764 4 | 0.729 3 | 0.730 3 | 0.720 3 | 0.690 9 | 0.770 0 | 0.758 1 | 0.722 2 | ||
| EBSR | PSNR | 31.98 | 31.75 | 30.61 | 28.47 | 28.36 | 27.55 | 27.55 | 27.49 | 26.89 | 25.82 | 25.62 | 24.84 | |
| SSIM | ||||||||||||||
| SASR | PSNR | 32.00 | 31.80 | 30.70 | 28.52 | 28.31 | 27.50 | 27.60 | 27.49 | 26.87 | ||||
| SSIM | ||||||||||||||
| DCCL | 5.5 | PSNR | 32.04 | 31.55 | 30.29 | 28.40 | 28.21 | 27.35 | 27.52 | 27.42 | 26.78 | 25.77 | 25.47 | 24.6 |
| SSIM | 0.890 4 | 0.879 6 | 0.853 1 | 0.775 3 | 0.767 3 | 0.724 9 | 0.733 1 | 0.726 6 | 0.691 0 | 0.776 0 | 0.764 8 | 0.724 4 | ||
| BDSSR | 1.7 | PSNR | 32.26 | 32.01 | 30.90 | 28.69 | 28.55 | 27.67 | 27.65 | 27.56 | 26.92 | 26.16 | 25.89 | 25.02 |
| SSIM | 0.894 2 | 0.888 9 | 0.865 6 | 0.781 6 | 0.775 0 | 0.737 7 | 0.736 1 | 0.729 5 | 0.695 7 | 0.785 8 | 0.773 4 | 0.735 8 | ||
表2 各向同性高斯模糊下不同方法的PSNR和SSIM性能比较(×4 SR)
Table 2 Comparison of PSNR and SSIM performance of different methods under isotropic Gaussian blur for ×4 SR
| 方法 | 参数 量/M | 性能 指标 | Set5 | Set14 | B100 | Urban100 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1.2 | 2.4 | 3.6 | 1.2 | 2.4 | 3.6 | 1.2 | 2.4 | 3.6 | 1.2 | 2.4 | 3.6 | |||
| Bicubic | PSNR | 27.69 | 25.99 | 24.45 | 25.60 | 24.39 | 23.25 | 25.58 | 24.67 | 23.80 | 22.73 | 21.76 | 20.84 | |
| SSIM | 0.790 4 | 0.735 1 | 0.677 4 | 0.682 0 | 0.629 2 | 0.581 1 | 0.646 1 | 0.598 2 | 0.557 0 | 0.634 1 | 0.579 1 | 0.530 5 | ||
| EDSR | 43.0 | PSNR | 30.24 | 26.72 | 24.67 | 27.47 | 24.93 | 23.42 | 26.86 | 25.09 | 23.94 | 24.69 | 22.25 | 20.99 |
| SSIM | ||||||||||||||
| SwinIR | 11.9 | PSNR | 30.43 | 26.72 | 24.67 | 27.57 | 24.94 | 23.42 | 26.96 | 25.10 | 23.93 | 24.86 | 22.26 | 20.99 |
| SSIM | 0.867 5 | 0.766 0 | 0.688 2 | 0.754 4 | 0.656 8 | 0.589 6 | 0.710 0 | 0.622 4 | 0.564 1 | 0.746 8 | 0.612 9 | 0.540 1 | ||
| DCT | 0.7 | PSNR | 30.20 | 26.71 | 24.67 | 27.44 | 24.94 | 23.42 | 26.87 | 25.09 | 23.93 | 24.63 | 22.25 | 20.98 |
| SSIM | 0.862 8 | 0.766 0 | 0.688 3 | 0.749 6 | 0.656 6 | 0.589 8 | 0.705 9 | 0.622 0 | 0.564 1 | 0.735 1 | 0.612 3 | 0.540 0 | ||
| BSRGAN | 16.7 | PSNR | 27.87 | 27.59 | 26.72 | 25.98 | 25.74 | 24.97 | 25.62 | 25.39 | 24.80 | 23.39 | 23.09 | 22.40 |
| SSIM | 0.806 0 | 0.789 3 | 0.757 9 | 0.687 7 | 0.666 8 | 0.633 3 | 0.647 4 | 0.626 8 | 0.593 1 | 0.691 9 | 0.663 6 | 0.621 7 | ||
| KOALAnet | 18.6 | PSNR | 30.19 | 28.63 | 26.19 | 27.70 | 26.70 | 24.92 | 27.21 | 27.23 | 25.98 | 24.88 | 24.35 | 22.86 |
| SSIM | 0.868 8 | 0.827 5 | 0.747 0 | 0.756 7 | 0.720 8 | 0.650 9 | 0.729 6 | 0.723 0 | 0.655 2 | 0.749 9 | 0.722 9 | 0.642 5 | ||
| IKC | 5.3 | PSNR | 31.76 | 30.35 | 30.26 | 28.44 | 28.17 | 26.63 | 27.43 | 27.28 | 26.41 | 25.63 | 25.02 | 24.07 |
| SSIM | 0.887 0 | 0.857 4 | 0.858 4 | 0.771 4 | 0.760 6 | 0.710 0 | 0.724 0 | 0.716 4 | 0.685 4 | 0.767 6 | 0.742 7 | 0.702 4 | ||
| IDMBSR | 4.2 | PSNR | 31.90 | 31.78 | 30.68 | 28.50 | 28.36 | 27.60 | 27.58 | 27.51 | 26.90 | 25.91 | 25.68 | 24.91 |
| SSIM | 0.890 3 | 0.886 0 | 0.862 4 | 0.777 0 | 0.770 6 | 0.736 4 | 0.733 4 | 0.727 8 | 0.695 8 | 0.778 0 | 0.768 0 | 0.733 0 | ||
| DAN | 4.3 | PSNR | 32.22 | 31.96 | 30.94 | 28.65 | 28.54 | 27.68 | 27.64 | 27.58 | 26.95 | 26.20 | 25.96 | 25.08 |
| SSIM | 0.893 6 | 0.888 1 | 0.865 9 | 0.779 5 | 0.772 4 | 0.737 2 | 0.734 3 | 0.728 2 | 0.695 0 | 0.786 6 | 0.775 8 | 0.739 4 | ||
| DASR | 5.8 | PSNR | 31.92 | 31.75 | 30.59 | 28.44 | 28.28 | 27.45 | 27.52 | 27.43 | 26.83 | 25.69 | 25.44 | 24.66 |
| SSIM | 0.890 4 | 0.885 5 | 0.860 1 | 0.773 1 | 0.764 4 | 0.729 3 | 0.730 3 | 0.720 3 | 0.690 9 | 0.770 0 | 0.758 1 | 0.722 2 | ||
| EBSR | PSNR | 31.98 | 31.75 | 30.61 | 28.47 | 28.36 | 27.55 | 27.55 | 27.49 | 26.89 | 25.82 | 25.62 | 24.84 | |
| SSIM | ||||||||||||||
| SASR | PSNR | 32.00 | 31.80 | 30.70 | 28.52 | 28.31 | 27.50 | 27.60 | 27.49 | 26.87 | ||||
| SSIM | ||||||||||||||
| DCCL | 5.5 | PSNR | 32.04 | 31.55 | 30.29 | 28.40 | 28.21 | 27.35 | 27.52 | 27.42 | 26.78 | 25.77 | 25.47 | 24.6 |
| SSIM | 0.890 4 | 0.879 6 | 0.853 1 | 0.775 3 | 0.767 3 | 0.724 9 | 0.733 1 | 0.726 6 | 0.691 0 | 0.776 0 | 0.764 8 | 0.724 4 | ||
| BDSSR | 1.7 | PSNR | 32.26 | 32.01 | 30.90 | 28.69 | 28.55 | 27.67 | 27.65 | 27.56 | 26.92 | 26.16 | 25.89 | 25.02 |
| SSIM | 0.894 2 | 0.888 9 | 0.865 6 | 0.781 6 | 0.775 0 | 0.737 7 | 0.736 1 | 0.729 5 | 0.695 7 | 0.785 8 | 0.773 4 | 0.735 8 | ||
| 模型 | 参数量/M | 计算量/G | 运行 时间/ms | 运行占用 内存/M |
|---|---|---|---|---|
| DAN | 4.3 | 1236.00 | 174.00 | 101.65 |
| BSRGAN | 16.7 | 1174.00 | 79.86 | 75.02 |
| DASR | 5.8 | 206.50 | 15.95 | 46.03 |
| KDSR | 5.8 | 255.25 | 14.12 | 32.90 |
| MRDA | 5.8 | 191.00 | 14.60 | 32.66 |
| DAST | 15.6 | 851.00 | 675.76 | 99.47 |
| BDSSR | 1.7 | 120.00 | 15.11 | 9.30 |
表3 不同模型在参数量、计算量、运行时间和运行占用内存的比较
Table 3 Comparison of different models in terms of the number of parameters, computational cost, running time, and running memory footprint
| 模型 | 参数量/M | 计算量/G | 运行 时间/ms | 运行占用 内存/M |
|---|---|---|---|---|
| DAN | 4.3 | 1236.00 | 174.00 | 101.65 |
| BSRGAN | 16.7 | 1174.00 | 79.86 | 75.02 |
| DASR | 5.8 | 206.50 | 15.95 | 46.03 |
| KDSR | 5.8 | 255.25 | 14.12 | 32.90 |
| MRDA | 5.8 | 191.00 | 14.60 | 32.66 |
| DAST | 15.6 | 851.00 | 675.76 | 99.47 |
| BDSSR | 1.7 | 120.00 | 15.11 | 9.30 |
图7 各方法在Urban100数据集上的视觉对比(×2 SR)
Fig. 7 Visual comparison of various methods on the Urban100 dataset for×2 SR ((a) HR; (b) Bicubic; (c) SwinIR; (d) BSRGAN; (e) KOALANet; (f) EDSR; (g) DAN; (h) IKC; (i) DASR; (j) BDSSR)
图8 各方法在Urban100数据集上的视觉对比(×4 SR)
Fig. 8 Visual comparison of various methods on the Urban100 dataset for ×4 SR ((a) HR; (b) Bicubic; (c) SwinIR; (d) BSRGAN; (e) KOALANet; (f) EDSR; (g) DAN; (h) IKC; (i) DASR; (j) BDSSR)
| 方法 | 参数量 | 噪声 | 各向异性模糊核 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |||
| DnCNN+RCAN | 650 K+15.5 M | 0 | 26.44 | 26.22 | 24.48 | 24.23 | 24.29 | 24.19 | 23.9 | 23.42 | 23.01 |
| 5 | 26.10 | 25.90 | 24.29 | 24.07 | 24.14 | 24.02 | 23.74 | 23.31 | 22.92 | ||
| 10 | 25.65 | 25.47 | 24.05 | 23.84 | 23.92 | 23.80 | 23.54 | 23.14 | 22.77 | ||
| DnCNN+IKC | 650 K+5.3 M | 0 | 27.71 | 27.78 | 27.11 | 27.02 | 26.93 | 26.65 | 26.5 | 26.01 | 25.33 |
| 5 | 26.91 | 26.80 | 24.87 | 24.53 | 24.56 | 24.40 | 24.06 | 23.53 | 23.06 | ||
| 10 | 26.16 | 26.09 | 24.55 | 24.33 | 24.35 | 24.17 | 23.92 | 23.43 | 23.01 | ||
| DASR | 5.8 M | 0 | 27.99 | 27.97 | 27.53 | 27.45 | 27.43 | 27.22 | 27.19 | 26.83 | 26.21 |
| 5 | 27.25 | 27.18 | 26.37 | 26.16 | 26.09 | 25.96 | 25.85 | 25.52 | 25.04 | ||
| 10 | 26.57 | 26.51 | 25.64 | 25.47 | 25.43 | 25.31 | 25.16 | 24.80 | 24.43 | ||
| EBSR | 0 | 28.16 | 28.08 | 27.55 | 27.52 | 27.50 | 27.24 | 27.27 | 26.99 | 26.46 | |
| 5 | 27.40 | 27.31 | 26.45 | 26.28 | 26.21 | 26.13 | 25.97 | 25.62 | 25.14 | ||
| 10 | 26.71 | 26.58 | 25.73 | 25.55 | 25.51 | 25.41 | 25.27 | 24.91 | 24.48 | ||
| BDSSR | 1.7 M | 0 | 28.25 | 28.26 | 27.76 | 27.73 | 27.72 | 27.45 | 27.47 | 27.18 | 26.62 |
| 5 | 27.49 | 27.41 | 26.51 | 26.30 | 26.27 | 26.20 | 26.04 | 25.69 | 25.25 | ||
| 10 | 26.75 | 26.65 | 25.75 | 25.56 | 25.57 | 25.47 | 25.32 | 24.99 | 24.55 | ||
表4 各向异性高斯模糊和噪声退化下不同方法的PSNR性能比较(×4 SR)
Table 4 Comparison of PSNR performance of different methods under anisotropic Gaussian blur and noise degradation for ×4 SR
| 方法 | 参数量 | 噪声 | 各向异性模糊核 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |||
| DnCNN+RCAN | 650 K+15.5 M | 0 | 26.44 | 26.22 | 24.48 | 24.23 | 24.29 | 24.19 | 23.9 | 23.42 | 23.01 |
| 5 | 26.10 | 25.90 | 24.29 | 24.07 | 24.14 | 24.02 | 23.74 | 23.31 | 22.92 | ||
| 10 | 25.65 | 25.47 | 24.05 | 23.84 | 23.92 | 23.80 | 23.54 | 23.14 | 22.77 | ||
| DnCNN+IKC | 650 K+5.3 M | 0 | 27.71 | 27.78 | 27.11 | 27.02 | 26.93 | 26.65 | 26.5 | 26.01 | 25.33 |
| 5 | 26.91 | 26.80 | 24.87 | 24.53 | 24.56 | 24.40 | 24.06 | 23.53 | 23.06 | ||
| 10 | 26.16 | 26.09 | 24.55 | 24.33 | 24.35 | 24.17 | 23.92 | 23.43 | 23.01 | ||
| DASR | 5.8 M | 0 | 27.99 | 27.97 | 27.53 | 27.45 | 27.43 | 27.22 | 27.19 | 26.83 | 26.21 |
| 5 | 27.25 | 27.18 | 26.37 | 26.16 | 26.09 | 25.96 | 25.85 | 25.52 | 25.04 | ||
| 10 | 26.57 | 26.51 | 25.64 | 25.47 | 25.43 | 25.31 | 25.16 | 24.80 | 24.43 | ||
| EBSR | 0 | 28.16 | 28.08 | 27.55 | 27.52 | 27.50 | 27.24 | 27.27 | 26.99 | 26.46 | |
| 5 | 27.40 | 27.31 | 26.45 | 26.28 | 26.21 | 26.13 | 25.97 | 25.62 | 25.14 | ||
| 10 | 26.71 | 26.58 | 25.73 | 25.55 | 25.51 | 25.41 | 25.27 | 24.91 | 24.48 | ||
| BDSSR | 1.7 M | 0 | 28.25 | 28.26 | 27.76 | 27.73 | 27.72 | 27.45 | 27.47 | 27.18 | 26.62 |
| 5 | 27.49 | 27.41 | 26.51 | 26.30 | 26.27 | 26.20 | 26.04 | 25.69 | 25.25 | ||
| 10 | 26.75 | 26.65 | 25.75 | 25.56 | 25.57 | 25.47 | 25.32 | 24.99 | 24.55 | ||
| 模型 | 特征调制 | 残差 | 拼接 | 性能指标 | Set5 | Set14 | B100 | Urban100 | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1.2 | 2.4 | 1.2 | 2.4 | 1.2 | 2.4 | 1.2 | 2.4 | |||||
| A (Ours) | √ | √ | √ | PSNR | 32.26 | 32.01 | 28.69 | 28.55 | 27.65 | 27.56 | 26.16 | 25.89 |
| SSIM | 0.894 2 | 0.888 9 | 0.781 6 | 0.775 0 | 0.736 1 | 0.729 5 | 0.785 8 | 0.773 4 | ||||
| B | √ | √ | PSNR | 32.17 | 31.94 | 28.63 | 28.50 | 27.63 | 27.55 | 26.03 | 25.80 | |
| SSIM | 0.893 7 | 0.888 4 | 0.779 5 | 0.772 7 | 0.735 2 | 0.729 3 | 0.781 8 | 0.770 5 | ||||
| C | √ | √ | PSNR | 32.15 | 31.93 | 28.65 | 28.50 | 27.62 | 27.55 | 26.05 | 25.80 | |
| SSIM | 0.893 3 | 0.888 4 | 0.779 3 | 0.771 8 | 0.734 4 | 0.728 5 | 0.782 2 | 0.770 7 | ||||
| D | √ | √ | PSNR | 32.18 | 31.94 | 28.62 | 28.44 | 27.63 | 27.53 | 26.05 | 25.74 | |
| SSIM | 0.893 3 | 0.887 1 | 0.778 7 | 0.770 6 | 0.733 5 | 0.726 6 | 0.781 1 | 0.767 2 | ||||
表5 不同模块对模型的影响
Table 5 Theimpact of different modules on the model
| 模型 | 特征调制 | 残差 | 拼接 | 性能指标 | Set5 | Set14 | B100 | Urban100 | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1.2 | 2.4 | 1.2 | 2.4 | 1.2 | 2.4 | 1.2 | 2.4 | |||||
| A (Ours) | √ | √ | √ | PSNR | 32.26 | 32.01 | 28.69 | 28.55 | 27.65 | 27.56 | 26.16 | 25.89 |
| SSIM | 0.894 2 | 0.888 9 | 0.781 6 | 0.775 0 | 0.736 1 | 0.729 5 | 0.785 8 | 0.773 4 | ||||
| B | √ | √ | PSNR | 32.17 | 31.94 | 28.63 | 28.50 | 27.63 | 27.55 | 26.03 | 25.80 | |
| SSIM | 0.893 7 | 0.888 4 | 0.779 5 | 0.772 7 | 0.735 2 | 0.729 3 | 0.781 8 | 0.770 5 | ||||
| C | √ | √ | PSNR | 32.15 | 31.93 | 28.65 | 28.50 | 27.62 | 27.55 | 26.05 | 25.80 | |
| SSIM | 0.893 3 | 0.888 4 | 0.779 3 | 0.771 8 | 0.734 4 | 0.728 5 | 0.782 2 | 0.770 7 | ||||
| D | √ | √ | PSNR | 32.18 | 31.94 | 28.62 | 28.44 | 27.63 | 27.53 | 26.05 | 25.74 | |
| SSIM | 0.893 3 | 0.887 1 | 0.778 7 | 0.770 6 | 0.733 5 | 0.726 6 | 0.781 1 | 0.767 2 | ||||
| [1] |
GAO H, DANG D P. Learning accurate and enriched features for stereo image super-resolution[J]. Pattern Recognition, 2025, 159: 111170.
DOI URL |
| [2] | ANWAR S, KHAN S, BARNES N. A deep journey into super-resolution: a survey[J]. ACM Computing Surveys, 2021, 53(3): 60. |
| [3] |
WANG Z H, CHEN J, HOI S C H. Deep learning for image super-resolution: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3365-3387.
DOI URL |
| [4] | ZHANG Y L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]// The 15th European Conference on Computer Vision. Cham: Springer, 2018: 294-310. |
| [5] | LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]// IEEE Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2017: 1132-1140. |
| [6] | LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]// IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 105-114. |
| [7] | SHI W Z, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]// IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 1874-1883. |
| [8] | ZHANG K, ZUO W M, ZHANG L. Learning a single convolutional super-resolution network for multiple degradations[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 3262-3271. |
| [9] | DONG C, LOY C C, HE K M, et al. Learning a deep convolutional network for image super-resolution[C]// The 13th European Conference on Computer Vision. Cham: Springer, 2014: 184-199. |
| [10] | TAI Y, YANG J, LIU X M. Image super-resolution via deep recursive residual network[C]// IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 2790-2798. |
| [11] |
ZHANG K, ZUO W M, CHEN Y J, et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155.
DOI PMID |
| [12] | LIU A R, LIU Y H, GU JJ, et al. Blind image super-resolution: asurvey and beyond[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(5): 5461-5480. |
| [13] | LUOZ X, HUANGY LIS, et al. Unfolding the alternating optimization for blind super resolution[C]// The 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 473. |
| [14] | GU JJ, LU H N, ZUO W M, et al. Blind super-resolution with iterative kernel correction[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 1604-1613. |
| [15] | LIANG J Y, ZHANG K, GU S H, et al. Flow-based kernel prior with application to blind super-resolution[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 10596-10605. |
| [16] |
KHAN A H, MICHELONI C, MARTINEL N. Lightweight prompt learning implicit degradation estimation network for blind super resolution[J]. IEEE Transactions on Image Processing, 2024. 33: 4556-4567.
DOI PMID |
| [17] | WANG L G, WANG Y Q, DONG X Y, et al. Unsupervised degradation representation learning for blind super-resolution[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 10576-10585. |
| [18] | XIA B, ZHANG Y L, WANG Y T, et al. Knowledge distillation based degradation estimation for blind super-resolution[EB/OL]. [2024-09-30]. https://dblp.uni-trier.de/db/conf/iclr/iclr2023.html#XiaZWTYTG23a. |
| [19] |
XIA B, TIAN Y P, ZHANG Y L, et al. Meta-learning-based degradation representation for blind super-resolution[J]. IEEE Transactions on Image Processing, 2023, 32: 3383-3396.
DOI URL |
| [20] |
ZHANG Y F, DONG L, YANG H, et al. Weakly-supervised contrastive learning-based implicit degradation modeling for blind image super-resolution[J]. Knowledge-Based Systems, 2022, 249: 108984.
DOI URL |
| [21] |
TANG Y G, ZHANG X, BU C N. A boosted degradation representation learning for blind image super-resolution[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 108459.
DOI URL |
| [22] |
ZHANG Q Y, ZHENG B L, LI Z P, et al. Non-local degradation modeling for spatially adaptive single image super-resolution[J]. Neural Networks, 2024, 175: 106293.
DOI URL |
| [23] |
QIU Y J, ZHU Q, ZHU S Y, et al. Dual circle contrastive learning-based blind image super-resolution[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(3): 1757-1771.
DOI URL |
| [24] | SIRNAM S, YANG J Y, NEIMAN T, et al. X-former: unifying contrastive and reconstruction learning for MLLMs[C]// The 18th European Conference on Computer Vision. Cham: Springer, 2025: 146-162. |
| [25] | CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[EB/OL]. [2024-06-01]. https://dblp.uni-trier.de/db/conf/icml/icml2020.html#ChenK0H20. |
| [26] | KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]// IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 1646-1654. |
| [27] | 满开亮, 汪友生, 刘继荣. 基于稠密残差网络的图像超分辨率重建算法[J]. 图学学报, 2021, 42(4): 556-562. |
| MAN K L, WANG Y S, LIU J R. Image super-resolution reconstruction algorithmbased on dense residual network[J]. Journal of Graphics, 2021, 42(4): 556-562 (in Chinese). | |
| [28] | LIANG J Y, CAO J Z, SUN G L, et al. SwinIR: image restoration using Swin transformer[C]// IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 1833-1844. |
| [29] |
陈冠豪, 徐丹, 贺康建, 等. 基于转置注意力和CNN的图像超分辨率重建网络[J]. 图学学报, 2025, 46(1): 35-46.
DOI |
|
CHEN G H, XU D, HE K J, et al. TSA-SFNet: transpose self-attention and CNN based stereoscopic fusion network for image super-resolution[J]. Journal of Graphics, 2025, 46(1): 35-46 (in Chinese).
DOI |
|
| [30] |
YU J X, CHEN Z, WANG J K, et al. Enhancing image super-resolution with dual compression transformer[J]. The Visual Computer, 2025, 41(7): 4879-4892.
DOI |
| [31] |
XU L, XIAO Q G, CHEN Q C, et al. Dynamic learnable degradation for blind super-resolution[J]. Expert Systems with Applications, 2024, 238: 121748.
DOI URL |
| [32] |
LIU Q G, GAO P, HAN K, et al. Degradation-aware self-attention based transformer for blind image super-resolution[J]. IEEE Transactions on Multimedia, 2024, 26: 7516-7528.
DOI URL |
| [33] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// The 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19. |
| [34] | AGUSTSSON E, TIMOFTE R. NTIRE 2017 challenge on single image super-resolution: dataset and study[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2017: 1122-1131. |
| [35] | TIMOFTE R, AGUSTSSON E, VAN GOOL L, et al. NTIRE 2017 challenge on single image super-resolution: methods and results[C]// IEEE Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2017: 1110-1121. |
| [36] | BEVILACQUA M, ROUMY A, GUILLEMON C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[EB/OL]. [2024-08-03]. https://dblp.uni-trier.de/db/conf/bmvc/bmvc2012.html#BevilacquaRGA12. |
| [37] | ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[C]// The 7th International Conference on Curves and Surfaces. Cham: Springer, 2012: 711-730. |
| [38] | MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]// The 8th IEEE International Conference on Computer Vision. New York: IEEE Press, 2001: 416-423. |
| [39] | HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars[C]// IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2015: 5197-5206. |
| [40] | ZHANG K, LIANG J Y, VAN GOOL L, et al. Designing a practical degradation model for deep blind image super-resolution[C]// IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 4771-4780. |
| [41] | KIM S Y, SIM H, KIM M. KOALAnet: blind super-resolution using kernel-oriented adaptive local adjustment[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 10606-10615. |
| [42] | LIANG J, ZENG H, ZHANG L. Efficient and degradation- adaptive network for real-world image super-resolution[C]// The 17th European Conference on Computer Vision. Cham: Springer, 2022: 574-591. |
| [1] | 琚晨, 丁嘉欣, 王泽兴, 李广钊, 管振祥, 张常有. 面向有限元法的图神经网络形函数近似方法[J]. 图学学报, 2025, 46(6): 1161-1171. |
| [2] | 易斌, 张立斌, 刘丹楹, 唐军, 方俊俊, 李雯琦. 基于AMTA-Net的卷制过程激光打孔通风率预测模型[J]. 图学学报, 2025, 46(6): 1224-1232. |
| [3] | 薄文, 琚晨, 刘维青, 张焱, 胡晶晶, 程婧晗, 张常有. 基于退化感知时序建模的装备维保时机预测方法[J]. 图学学报, 2025, 46(6): 1233-1246. |
| [4] | 赵振兵, 欧阳文斌, 冯烁, 李浩鹏, 马隽. 基于类内稀疏先验与改进YOLOv8的绝缘子红外图像检测方法[J]. 图学学报, 2025, 46(6): 1247-1256. |
| [5] | 贺蒙蒙, 张小艳, 李洪安. 基于Mamba结构的轻量级皮肤病变图像分割网络[J]. 图学学报, 2025, 46(6): 1257-1266. |
| [6] | 李星辰, 李宗民, 杨超智. 基于可信伪标签微调的测试时适应算法[J]. 图学学报, 2025, 46(6): 1292-1303. |
| [7] | 王海涵. 基于YOLOv8-OSRA的钢拱塔表观病害多目标检测方法[J]. 图学学报, 2025, 46(6): 1327-1336. |
| [8] | 翟永杰, 翟邦朝, 胡哲东, 杨珂, 王乾铭, 赵晓瑜. 基于自适应特征融合金字塔与注意力机制的输电线路绝缘子缺陷检测方法[J]. 图学学报, 2025, 46(5): 950-959. |
| [9] | 朱泓淼, 钟国杰, 张严辞. 基于均值漂移与深度学习融合的小语义点云语义分割[J]. 图学学报, 2025, 46(5): 998-1009. |
| [10] | 郭瑞东, 蓝贵文, 范冬林, 钟展, 徐梓睿, 任新月. 基于特征聚焦扩散网络的电力巡检目标检测算法[J]. 图学学报, 2025, 46(4): 719-726. |
| [11] | 闫卓越, 刘骊, 付晓东, 刘利军, 彭玮. 三维人体姿态和形状估计的分层注意力时空特征融合算法[J]. 图学学报, 2025, 46(4): 746-755. |
| [12] | 汪子宇, 曹维维, 曹玉柱, 刘猛, 陈俊, 刘兆邦, 郑健. 基于类内区域动态解耦的半监督肺气管分割[J]. 图学学报, 2025, 46(4): 763-774. |
| [13] | 廖国琼, 黄龙杰, 李清新, 辜勇, 李海波. 面向单目可见光环境的自适应双手重建网络[J]. 图学学报, 2025, 46(4): 837-846. |
| [14] | 王道累, 丁子健, 杨君, 郑劭恺, 朱瑞, 赵文彬. 基于体素网格特征的NeRF大场景重建方法[J]. 图学学报, 2025, 46(3): 502-509. |
| [15] | 孙浩, 谢滔, 何龙, 郭文忠, 虞永方, 吴其军, 王建伟, 东辉. 多模态文本视觉大模型机器人地形感知算法研究[J]. 图学学报, 2025, 46(3): 558-567. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||