图学学报 ›› 2024, Vol. 45 ›› Issue (4): 726-735.DOI: 10.11996/JG.j.2095-302X.2024040726
收稿日期:
2024-02-10
接受日期:
2024-06-26
出版日期:
2024-08-31
发布日期:
2024-09-03
第一作者:
牛为华(1978-),女,副教授,博士。主要研究方向为计算机视觉。E-mail:niuwh@ncepu.edu.cn
Received:
2024-02-10
Accepted:
2024-06-26
Published:
2024-08-31
Online:
2024-09-03
First author:
NIU Weihua (1978-), associate professor, Ph.D. Her main research interests cover computer vision. E-mail:niuwh@ncepu.edu.cn
摘要:
针对船舰遥感目标图像检测中存在的小目标检测困难,船舰形状各异以及传统水平边界框对于高长宽比的目标所框选冗余信息较多的问题,提出了一种基于改进YOLOv8的船舰遥感图像旋转目标检测算法。通过改进主干网络中的卷积结构,缓解了由于跨步卷积所导致的细粒度信息丢失的问题,对于小目标检测的精度有所提升;将C2f中的部分卷积模块替换为DCNv3可变形卷积,使其可以更好提取不规则物体的特征信息,提高模型的非线性建模能力;在颈部网络中融入主干网络中的浅层特征信息,缓解了经多次卷积操作所导致的细节信息丢失的问题,提升了模型对小目标物体的检测能力。实验结果表明,改进后的算法在ShipRSImageNet数据集上的检测精度(mAP50)达到了84.317%,较基准模型提升了4.054%,在HRSC2016数据集上达到了93.235%,较基准模型提升了1.555%,在少量增加模型参数量的情况下取得了较高的检测性能,很好地平衡了模型的效率和性能。
中图分类号:
牛为华, 郭迅. 基于改进YOLOv8的船舰遥感图像旋转目标检测算法[J]. 图学学报, 2024, 45(4): 726-735.
NIU Weihua, GUO Xun. Rotating target detection algorithm in ship remote sensing images based on YOLOv8[J]. Journal of Graphics, 2024, 45(4): 726-735.
图5 普通卷积和可变形卷积对比((a)普通卷积;(b)可变性卷积)
Fig. 5 Comparison between ordinary convolution and deformable convolution ((a) Ordinary convolution; (b) Deformable convolution)
Module | Conv Focus | Params/M | FLOPs/G | Ship/% | Dock/% | mAP50/% |
---|---|---|---|---|---|---|
YOLOv3 | × | 7.2 | 21.1 | 80.7 | 68.0 | 74.4 |
YOLOv5 | × | 7.0 | 15.8 | 78.8 | 71.9 | 75.4 |
YOLOv8 | × | 3.0 | 8.1 | 74.1 | 78.2 | 76.1 |
YOLOv3 | √ | 7.7 | 37.0 | 82.5 | 70.0 | 76.2 (+1.8) |
YOLOv5 | √ | 8.0 | 29.7 | 79.5 | 74.3 | 76.9 (+1.5) |
YOLOv8 | √ | 3.2 | 11.6 | 77.2 | 78.3 | 77.8 (+1.7) |
表1 不同算法添加ConvFocus模块对比结果
Table 1 Comparison results of adding ConvFocus module to different algorithms
Module | Conv Focus | Params/M | FLOPs/G | Ship/% | Dock/% | mAP50/% |
---|---|---|---|---|---|---|
YOLOv3 | × | 7.2 | 21.1 | 80.7 | 68.0 | 74.4 |
YOLOv5 | × | 7.0 | 15.8 | 78.8 | 71.9 | 75.4 |
YOLOv8 | × | 3.0 | 8.1 | 74.1 | 78.2 | 76.1 |
YOLOv3 | √ | 7.7 | 37.0 | 82.5 | 70.0 | 76.2 (+1.8) |
YOLOv5 | √ | 8.0 | 29.7 | 79.5 | 74.3 | 76.9 (+1.5) |
YOLOv8 | √ | 3.2 | 11.6 | 77.2 | 78.3 | 77.8 (+1.7) |
Group | DCNv3数量 | Params/M | FLOPs/G | Ship/% | Dock/% | mAP50/% |
---|---|---|---|---|---|---|
G1 | 0 | 3.07 | 8.3 | 77.699 | 82.826 | 80.263 |
G2 | n | 2.94 | 8.1 | 78.549 | 85.959 | 82.254 |
G3 | 2n | 2.72 | 7.4 | 74.258 | 75.875 | 75.066 |
表2 C2f模块中替换不同数量的DCNv3的实验结果
Table 2 Experimental results of replacing different numbers of DCNv3 in C2f module
Group | DCNv3数量 | Params/M | FLOPs/G | Ship/% | Dock/% | mAP50/% |
---|---|---|---|---|---|---|
G1 | 0 | 3.07 | 8.3 | 77.699 | 82.826 | 80.263 |
G2 | n | 2.94 | 8.1 | 78.549 | 85.959 | 82.254 |
G3 | 2n | 2.72 | 7.4 | 74.258 | 75.875 | 75.066 |
Module | Params/M | FLOPs/G | Ship/% | Dock/% | mAP50/% |
---|---|---|---|---|---|
YOLOv8n | 3.00 | 8.1 | 76.093 | 82.999 | 79.546 |
YOLOv8n-obb | 3.07 | 8.3 | 77.699 | 82.826 | 80.263 |
Ours | 3.25 | 13.3 | 82.261 | 86.373 | 84.317 |
表3 改进前后实验结果对比
Table 3 Comparison of experimental results before and after improvement
Module | Params/M | FLOPs/G | Ship/% | Dock/% | mAP50/% |
---|---|---|---|---|---|
YOLOv8n | 3.00 | 8.1 | 76.093 | 82.999 | 79.546 |
YOLOv8n-obb | 3.07 | 8.3 | 77.699 | 82.826 | 80.263 |
Ours | 3.25 | 13.3 | 82.261 | 86.373 | 84.317 |
Module | Params/M | FLOPs/G | Ship/% | Dock/% | mAP@50/% | AP-Small/% | AR-Small/% |
---|---|---|---|---|---|---|---|
YOLOv8n-obb | 3.07 | 8.3 | 77.699 | 82.826 | 80.263 | 56.2 | 84.3 |
YOLOv8n-obb + CF | 3.33 | 11.8 | 79.299 | 83.616 | 81.458 | 63.2 | 84.5 |
YOLOv8n-obb + C2fD | 2.94 | 8.1 | 78.549 | 85.959 | 82.254 | 59.5 | 84.9 |
YOLOv8n-obb + FF | 3.17 | 10.2 | 80.608 | 82.115 | 81.361 | 64.4 | 88.8 |
Ours | 3.25 | 13.3 | 82.261 | 86.373 | 84.317 | 58.3 | 90.2 |
表4 消融实验结果对比
Table 4 Comparsion of the ablation experiments
Module | Params/M | FLOPs/G | Ship/% | Dock/% | mAP@50/% | AP-Small/% | AR-Small/% |
---|---|---|---|---|---|---|---|
YOLOv8n-obb | 3.07 | 8.3 | 77.699 | 82.826 | 80.263 | 56.2 | 84.3 |
YOLOv8n-obb + CF | 3.33 | 11.8 | 79.299 | 83.616 | 81.458 | 63.2 | 84.5 |
YOLOv8n-obb + C2fD | 2.94 | 8.1 | 78.549 | 85.959 | 82.254 | 59.5 | 84.9 |
YOLOv8n-obb + FF | 3.17 | 10.2 | 80.608 | 82.115 | 81.361 | 64.4 | 88.8 |
Ours | 3.25 | 13.3 | 82.261 | 86.373 | 84.317 | 58.3 | 90.2 |
Method | Venue | Backbone | Params/M | FLOPs/G | Ship/% | Dock/% | mAP@50/% |
---|---|---|---|---|---|---|---|
GWD[ | ICML’21 | ResNet-50 | 36.42 | 215.92 | 61.90 | 10.40 | 36.20 |
KLD[ | NIPS’21 | ResNet-50 | 36.13 | 209.58 | 60.30 | 16.70 | 38.50 |
R3Det[ | AAAI’21 | ResNet-50 | 41.58 | 200.92 | 68.60 | 29.70 | 45.80 |
Gliding vertex[ | TPAMI’20 | ResNet-50 | 41.13 | 121.50 | 68.80 | 40.10 | 54.50 |
S2A-Net[ | TGRS’21 | ResNet-50 | 35.02 | 198.03 | 70.00 | 45.20 | 57.60 |
KFIoU[ | ICLR’23 | CSPDarkNet-53 | 11.42 | 29.60 | 75.71 | 71.07 | 73.39 |
PETDet[ | IEEE TGRS’23 | ResNet-50 | 47.67 | 204.07 | 78.70 | 78.50 | 78.60 |
YOLOv8n-obb | - | CSPDarkNet-53 | 3.07 | 8.30 | 77.69 | 82.82 | 80.26 |
Ours | - | CSPDarkNet-53 | 3.25 | 13.30 | 82.26 | 86.37 | 84.31 |
表5 不同模型在ShipRSImageNet数据集上的对比实验
Table 5 Comparative experiments of different models on ShipRSImageNet dataset
Method | Venue | Backbone | Params/M | FLOPs/G | Ship/% | Dock/% | mAP@50/% |
---|---|---|---|---|---|---|---|
GWD[ | ICML’21 | ResNet-50 | 36.42 | 215.92 | 61.90 | 10.40 | 36.20 |
KLD[ | NIPS’21 | ResNet-50 | 36.13 | 209.58 | 60.30 | 16.70 | 38.50 |
R3Det[ | AAAI’21 | ResNet-50 | 41.58 | 200.92 | 68.60 | 29.70 | 45.80 |
Gliding vertex[ | TPAMI’20 | ResNet-50 | 41.13 | 121.50 | 68.80 | 40.10 | 54.50 |
S2A-Net[ | TGRS’21 | ResNet-50 | 35.02 | 198.03 | 70.00 | 45.20 | 57.60 |
KFIoU[ | ICLR’23 | CSPDarkNet-53 | 11.42 | 29.60 | 75.71 | 71.07 | 73.39 |
PETDet[ | IEEE TGRS’23 | ResNet-50 | 47.67 | 204.07 | 78.70 | 78.50 | 78.60 |
YOLOv8n-obb | - | CSPDarkNet-53 | 3.07 | 8.30 | 77.69 | 82.82 | 80.26 |
Ours | - | CSPDarkNet-53 | 3.25 | 13.30 | 82.26 | 86.37 | 84.31 |
Method | Params/M | FLOPs/G | mAP@50/% |
---|---|---|---|
Gliding Vertex[ | 41.13 | 121.50 | 88.20 |
R3Det[ | 41.58 | 200.92 | 89.26 |
Oriented RCNN[ | 121.58 | 41.13 | 90.33 |
RoI-Transformer[ | 122.61 | 55.13 | 90.21 |
H2RBox-v2[ | 51.41 | 242.69 | 89.66 |
PSC[ | 36.19 | 210.94 | 90.06 |
YOLOv8n-obb | 3.07 | 8.30 | 91.68 |
Ours | 3.25 | 13.30 | 93.23 |
表6 不同模型在HRSC2016数据集上的对比实验
Table 6 Comparative experiments of different models on HRSC2016 dataset
Method | Params/M | FLOPs/G | mAP@50/% |
---|---|---|---|
Gliding Vertex[ | 41.13 | 121.50 | 88.20 |
R3Det[ | 41.58 | 200.92 | 89.26 |
Oriented RCNN[ | 121.58 | 41.13 | 90.33 |
RoI-Transformer[ | 122.61 | 55.13 | 90.21 |
H2RBox-v2[ | 51.41 | 242.69 | 89.66 |
PSC[ | 36.19 | 210.94 | 90.06 |
YOLOv8n-obb | 3.07 | 8.30 | 91.68 |
Ours | 3.25 | 13.30 | 93.23 |
图11 检测结果可视化对比图((a)原始图片;(b)真实标签;(c) YOLOv8n-obb;(d)本文改进算法)
Fig. 11 Test Result Comparison ((a) Original image; (b) True label; (c) YOLOv8n-obb; (d) Ours)
[1] | ZHU C R, ZHOU H, WANG R S, et al. A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(9): 3446-3456. |
[2] | SHI Z W, YU X R, JIANG Z G, et al. Ship detection in high-resolution optical imagery based on anomaly detector and local shape feature[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4511-4523. |
[3] | YANG F, XU Q Z, LI B. Ship detection from optical satellite images based on saliency segmentation and structure-LBP feature[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5): 602-606. |
[4] | ZHANG D D, WANG C P, FU Q. OFCOS: an oriented anchor-free detector for ship detection in remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 6004005. |
[5] | REN Z D, TANG Y Q, HE Z W, et al. Ship detection in high-resolution optical remote sensing images aided by saliency information[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5623616. |
[6] | HAN W X, KUERBAN A, YANG Y C, et al. Multi-vision network for accurate and real-time small object detection in optical remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 6001205. |
[7] | 张磊, 陈文, 王岳环. 用于遥感舰船细粒度检测与识别的关键子区域融合网络[J]. 中国图象图形学报, 2023, 28(9): 2940-2955. |
ZHANG L, CHEN W, WANG Y H. Key sub-region feature fusion network for fine-grained ship detection and recognition in remote sensing images[J]. Journal of Image and Graphics, 2023, 28(9): 2940-2955 (in Chinese). | |
[8] | 焦仕昂, 罗亮, 杨萌, 等. 基于改进YOLOv7的光学遥感图像船舶旋转目标检测[EB/OL]. (2023-07-05)[2024-04-16]. http://kns.cnki.net/kcms/detail/42.1824.U.20230704.1821.111.html. |
JIAO S A, LUO L, YANG M, et al. Ship rotating target detection in optical remote sensing images based on improved YOLOv7[EB/OL]. (2023-07-05)[2024-04-16]. http://kns.cnki.net/kcms/detail/42.1824.U.20230704.1821.111.html (in Cinese). | |
[9] | 邹珺淏, 任酉贵, 冷芳玲, 等. LW-YOLOv7SAR: 轻量SAR图像目标检测方法[EB/OL]. (2023-11-06) [2024-04-16]. http://kns.cnki.net/kcms/detail/21.1106.TP.20231106.0909.002.html. |
ZOU J H, REN Y G, LENG F L, etc. LW-YOLOv7SAR: Lightweight SAR image target detection method[EB/OL]. (2023-11-06)[2024-04-16]. http://kns.cnki.net/kcms/detail/21.1106.TP.20231106.0909.002.html (in Chinese). | |
[10] | 李大湘, 吉展, 刘颖, 等. 改进YOLOv7遥感图像目标检测算法[EB/OL]. [2024-04-15]. https://kns.cnki.net/kcms/detail/10.1034.T.20240412.2210.004.html. |
LI D X, JI Z, LIU Y, et al. Improving YOLOv7 remote sensing image target detection algorithm[EB/OL]. [2024-04-15]. https://kns.cnki.net/kcms/detail/10.1034.T.20240412.2210.004.html (in Chinese). | |
[11] |
曾伦杰, 储珺, 陈昭俊. 二阶段锚框和类均衡损失的遥感图像目标检测[J]. 图学学报, 2023, 44(2): 249-259.
DOI |
ZENG L J, CHU J, CHEN Z J. Object detection in remote sensing image based on two-stage anchor and class balanced loss[J]. Journal of Graphics, 2023, 44(2): 249-259 (in Chinese). | |
[12] | WANG W H, DAI J F, CHEN Z, et al. InternImage: exploring large-scale vision foundation models with deformable convolutions[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 14408-14419. |
[13] | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2024-04-15]. http://arxiv.org/abs/2004.10934. |
[14] | ZHANG H Y, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[EB/OL]. [2024-04-15]. http://arxiv.org/abs/1710.09412. |
[15] | ZHENG Z H, WANG P, REN D W, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8574-8586. |
[16] | LI X, WANG W H, WU L J, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[EB/OL]. [2024-04-15]. http://arxiv.org/abs/2006.04388. |
[17] | YANG X, ZHANG G F, YANG X J, et al. Detecting rotated objects as Gaussian distributions and its 3-D generalization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 4335-4354. |
[18] | DING J, XUE N, LONG Y, et al. Learning RoI transformer for oriented object detection in aerial images[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 2844-2853. |
[19] | YANG X, YAN J C, FENG Z M, et al. R3Det: refined single-stage detector with feature refinement for rotating object[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(4): 3163-3171. |
[20] | LLERENA J M, ZENI L F, KRISTEN L N, et al. Gaussian bounding boxes and probabilistic intersection-over-union for object detection[EB/OL]. [2024-04-15]. http://arxiv.org/abs/2106.06072. |
[21] | WANG R X, SHIVANNA R, CHENG D, et al. DCN V2: improved deep & cross network and practical lessons for web-scale learning to rank systems[C]// Proceedings of the Web Conference 2021. New York: ACM, 2021: 1785-1797. |
[22] | ZHANG Z N, ZHANG L, WANG Y, et al. ShipRSImageNet: a large-scale fine-grained dataset for ship detection in high-resolution optical remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 8458-8472. |
[23] | HAN J M, DING J, LI J, et al. Align deep features for oriented object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5602511. |
[24] | XU Y C, FU M T, WANG Q M, et al. Gliding vertex on the horizontal bounding box for multi-oriented object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(4): 1452-1459. |
[25] | YANG X, ZHANG G F, YANG X J, et al. Detecting rotated objects as Gaussian distributions and its 3-D generalization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 4335-4354. |
[26] | YANG X, ZHOU Y, ZHANG G F, et al. The KFIoU loss for rotated object detection[EB/OL]. [2024-04-15]. http://arxiv.org/abs/2201.12558. |
[27] | LI W T, ZHAO D P, YUAN B, et al. PETDet: proposal enhancement for two-stage fine-grained object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 62: 5602214. |
[28] | XIE X X, CHENG G, WANG J B, et al. Oriented R-CNN for object detection[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 3500-3509. |
[29] | YU Y, YANG X, LI Q Y, et al. H2RBox-v2: incorporating symmetry for boosting horizontal box supervised oriented object detection[EB/OL]. [2024-04-15]. http://arxiv.org/abs/2304.04403. |
[30] | YU Y, DA F P. Phase-shifting coder: predicting accurate orientation in oriented object detection[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 13354-13363. |
[1] | 许丹丹, 崔勇, 张世倩, 刘雨聪, 林予松.
优化医学影像三维渲染可视化效果:技术综述
[J]. 图学学报, 2024, 45(5): 879-891. |
[2] | 胡凤阔 , 叶兰 , 谭显峰 , 张钦展 , 胡志新 , 方清 , 王磊 , 满孝锋 . 一种基于改进 YOLOv8 的轻量化路面病害检测算法[J]. 图学学报, 2024, 45(5): 892-900. |
[3] | 王亚茹, 冯利龙, 宋晓轲, 屈卓, 杨珂, 王乾铭, 翟永杰.
TFD-YOLOv8:一种用于输电线路的异物检测方法
[J]. 图学学报, 2024, 45(5): 901-912. |
[4] | 刘义艳 , 郝婷楠 , 贺晨 , 常英杰 . 基于 DBBR-YOLO 的光伏电池表面缺陷检测[J]. 图学学报, 2024, 45(5): 913-921. |
[5] | 吴沛宸 , 袁立宁 , 胡皓 , 刘钊 , 郭放 . 基于注意力特征融合的视频异常行为检测[J]. 图学学报, 2024, 45(5): 922-929. |
[6] | 翟永杰, 李佳蔚, 陈年昊, 王乾铭, 王新颖. 融合改进 Transformer 的车辆部件检测方法[J]. 图学学报, 2024, 45(5): 930-940. |
[7] | 刘丽, 张起凡, 白宇昂, 黄凯烨. 结合Swin Transformer的多尺度遥感图像变化检测研究[J]. 图学学报, 2024, 45(5): 941-956. |
[8] | 姜晓恒, 段金忠, 卢洋, 崔丽莎, 徐明亮. 融合先验知识推理的表面缺陷检测[J]. 图学学报, 2024, 45(5): 957-967. |
[9] | 章东平 , 魏杨悦 , 何数技 , 徐云超 , 胡海苗 , 黄文君 . 特征融合与层间传递:一种基于Anchor DETR改进的目标检测方法[J]. 图学学报, 2024, 45(5): 968-978. |
[10] | 李刚 , 蔡泽浩 , 孙华勋 , 赵振兵 . 基于改进 OLOv8与语义知识融合的金具缺陷检测方法研究[J]. 图学学报, 2024, 45(5): 979-986. |
[11] | 熊超 , 王云艳 , 罗雨浩 . 特征对齐与上下文引导的多视图三维重建[J]. 图学学报, 2024, 45(5): 1008-1016. |
[12] | 孙己龙 , 刘勇 , 周黎伟 , 路鑫 , 侯小龙 , 王亚琼 , 王志丰 . 基于DCNv2和Transformer Decoder的隧道衬砌裂缝高效检测模型研究[J]. 图学学报, 2024, 45(5): 1050-1061. |
[13] | 罗智徽, 胡海涛, 马潇峰, 程文刚. 基于同质中间模态的跨模态行人再识别方法[J]. 图学学报, 2024, 45(4): 670-682. |
[14] | 胡欣, 常娅姝, 秦皓, 肖剑, 程鸿亮. 基于改进YOLOv8和GMM图像点集匹配的双目测距方法[J]. 图学学报, 2024, 45(4): 714-725. |
[15] | 曾志超, 徐玥, 王景玉, 叶元龙, 黄志开, 王欢. 基于SOE-YOLO轻量化的水面目标检测算法[J]. 图学学报, 2024, 45(4): 736-744. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||