[1] |
侯瑞超, 唐智诚, 王博, 等. 水面无人艇智能化技术的发展现状和趋势[J]. 中国造船, 2020, 61(S1): 211-220.
|
|
HOU R C, TANG Z C, WANG B, et al. Development status and trend of intelligent technology for surface unmanned boat[J]. Shipbuilding of China, 2020, 61(S1): 211-220 (in Chinese).
|
[2] |
罗逸豪, 孙创, 邵成, 等. 基于深度学习的水面无人艇目标检测算法综述[J]. 数字海洋与水下攻防, 2022, 5(6): 524-538.
|
|
LUO Y H, SUN C, SHAO C, et al. Review on object detection algorithm for unmanned surface vehicle based on deep learning[J]. Digital Ocean & Underwater Warfare, 2022, 5(6): 524-538 (in Chinese).
|
[3] |
盛明伟, 李俊, 秦洪德, 等. 基于改进YOLOv3的船舶目标检测算法[J]. 导航与控制, 2021, 20(2): 95-109.
DOI
|
|
SHENG M W, LI J, QIN H D, et al. Ship target detection algorithm based on the improved YOLOv3[J]. Navigation and Control, 2021, 20(2): 95-109 (in Chinese).
|
[4] |
程亮, 杨渊, 张云飞, 等. 面向无人艇智能感知的水上目标识别算法研究[J]. 电子测量与仪器学报, 2021, 35(9): 99-104.
|
|
CHENG L, YANG Y, ZHANG Y F, et al. Research on water target recognition algorithm for unmanned surface vessel[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(9): 99-104 (in Chinese).
|
[5] |
冯辉, 郭俊东, 徐海祥. 面向精准目标定位的水面目标检测算法[J]. 华中科技大学学报: 自然科学版, 2023, 51(10): 38-43.
|
|
FENG H, GUO J D, XU H X. Water surface object detection algorithm for accurate object location[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2023, 51(10): 38-43 (in Chinese).
|
[6] |
LIN F, HOU T, JIN Q, et al. Improved YOLO based detection algorithm for floating debris in waterway[EB/OL]. [2023-11-20]. https://doi.org/10.3390/e23091111.
|
[7] |
刘子洋, 徐慧英, 朱信忠, 等. Bi-YOLO: 一种基于YOLOv8改进的轻量化目标检测算法[EB/OL]. [2023-12-20]. https://link.cnki.net/urlid/43.1258.TP.20231107.1657.002.
|
|
LIU Z Y, XU H Y, ZHU X Z, et al. Bi-YOLO: an improved lightweight object detection algorithm based on YOLOv8[EB/OL]. [2023-11-20]. https://link.cnki.net/urlid/43.1258.TP.20231107.1657.002 (in Chinese).
|
[8] |
HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2023-11-20]. https://arxiv.orgabs/1704.04861.
|
[9] |
MA N, ZHANG X, ZHENG H, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[EB/OL]. [2023-11-20]. https://arxiv.org/abs/1807.11164.
|
[10] |
CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 1800-1807.
|
[11] |
LI H L, LI J, WEI H B, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[EB/OL]. [2023-11-20]. http://arxiv.org/abs/2206.02424.
|
[12] |
YANG B, BENDER G, LE Q V, et al. CondConv: conditionally parameterized convolutions for efficient inference[EB/OL]. [2023-10-20]. http://arxiv.org/abs/1904.04971.
|
[13] |
ZHANG Y K, ZHANG J, WANG Q, et al. DyNet: dynamic convolution for accelerating convolutional neural networks[EB/OL]. [2023-10-20]. http://arxiv.org/abs/2004.10694.
|
[14] |
LI C, ZHOU A J, YAO A B. Omni-dimensional dynamic convolution[EB/OL]. [2023-10-20]. http://arxiv.org/abs/2209.07947.
|
[15] |
丘锐聪, 周海峰, 陈颖, 等. 基于轻量化YOLOv7-tiny的船舶目标检测算法[EB/OL]. [2023-10-20]. https://link.cnki.net/urlid/21.1360.U.20231129.1740.002.
|
|
QIU R C, ZHOU H F, CHEN Y, et al. Ship target detection algorithm based on lightweight YOLOv7-tiny[EB/OL]. [2023-12-20]. https://link.cnki.net/urlid/21.1360.U.20231129.1740.002 (in Chinese).
|
[16] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7132-7141.
|
[17] |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
|
[18] |
OUYANG D L, HE S, ZHANG G Z, et al. Efficient multi-scale attention module with cross-spatial learning[C]// ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing. New York: IEEE Press, 2023: 1-5.
|
[19] |
ZHOU Z G, SUN J E, YU J B, et al. An image-based benchmark dataset and a novel object detector for water surface object detection[J]. Frontiers in Neurorobotics, 2021, 15: 723336.
|
[20] |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 13708-13717.
|
[21] |
YANG L X, ZHANG R Y, LI L D, et al. SimAM: a Simple, parameter-free attention module for convolutional neural networks[EB/OL]. [2023-12-20]. https://api.semanticscholar.org/CorpusID:235825945.
|
[22] |
LIU Y C, SHAO Z R, TENG Y Y, et al. NAM: normalization- based attention module[EB/OL]. [2023-12-20]. http://arxiv.org/abs/2111.12419.
|
[23] |
WANG Q L, WU B G, ZHU P F, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 11531-11539.
|
[24] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI
PMID
|
[25] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]// European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
|
[26] |
ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[EB/OL]. [2023-10-20]. http://arxiv.org/abs/2304.08069.
|
[27] |
CHEN H T, WANG Y H, GUO J Y, et al. VanillaNet: the power of minimalism in deep learning[EB/OL]. [2023-10-20]. http://arxiv.org/abs/2305.12972.
|