欢迎访问《图学学报》 分享到:

图学学报 ›› 2024, Vol. 45 ›› Issue (4): 736-744.DOI: 10.11996/JG.j.2095-302X.2024040736

• 图像处理与计算机视觉 • 上一篇    下一篇

基于SOE-YOLO轻量化的水面目标检测算法

曾志超1(), 徐玥1, 王景玉1, 叶元龙1, 黄志开1(), 王欢2   

  1. 1.南昌工程学院信息工程学院,江西 南昌 330000
    2.南昌工程学院机械工程学院,江西 南昌 330000
  • 收稿日期:2024-01-15 接受日期:2024-04-12 出版日期:2024-08-31 发布日期:2024-09-03
  • 通讯作者:黄志开(1969-),男,教授,博士。主要研究方向为图形图像处理、计算机视觉等。E-mail:1625305627@qq.com
  • 第一作者:曾志超(1998-),男,硕士研究生。主要研究方向为图像处理与目标检测。E-mail:z2c0828@163.com
  • 基金资助:
    国家重点研发计划项目(2019YFB1704502);国家自然科学基金项目(61472173);江西省研究生创新专项(yc2023-s995);江西省研究生创新专项(YJSCX202312)

A water surface target detection algorithm based on SOE-YOLO lightweight network

ZENG Zhichao1(), XU Yue1, WANG Jingyu1, YE Yuanlong1, HUANG Zhikai1(), WANG Huan2   

  1. 1. School of Information Engineering, Nanchang Institute of Technology, Nanchang Jiangxi 330000, China
    2. School of Mechanical Engineering, Nanchang Institute of Technology, Nanchang Jiangxi 330000, China
  • Received:2024-01-15 Accepted:2024-04-12 Published:2024-08-31 Online:2024-09-03
  • Contact: HUANG Zhikai (1969-), professor, Ph.D. His main research interests cover graphic image processing, computer vision, etc. E-mail:1625305627@qq.com
  • First author:ZENG Zhichao (1998-), master student. His main research interests cover graphic image processing and object detection. E-mail:z2c0828@163.com
  • Supported by:
    National Key Research and Development Plan of China(2019YFB1704502);National Natural Science Foundation of China(61472173);Jiangxi Provincial Graduate Innovation Special Fund Project(yc2023-s995);Jiangxi Provincial Graduate Innovation Special Fund Project(YJSCX202312)

摘要:

针对复杂多变的水面环境,小目标检测存在漏检、错检且检测平台计算资源有限的问题,提出了基于YOLOv8的轻量化水面目标检测算法SOE-YOLO。首先在Neck部分使用包含GSConv的Slim-Neck设计范式对模型进行轻量化改进;其次通过使用轻量型卷积(ODConv)模块重新构建Backbone部分,以减少参数量从而提高网络的检测速度;最后引入多尺度注意力机制(EMA)增强网络多尺度特征提取能力,提高小目标检测能力。在WSODD测试集中的实验结果表明,SOE-YOLO模型参数量和计算量分别为2.8 M和6.6 GFLOPs,与原模型相比分别减少12.5%和18.6%,同时mAP@%0.5和mAP@0.5-0.95分别达到79.9%和47.2%,与原模型相比分别提高2.4%和1.6%,且漏检率下降明显,优于当前流行的目标检测算法。FPS达到了64.25,满足水面目标检测实时性的要求。在实现轻量化的同时具有更好的检测性能,满足了在计算资源受限环境下的部署需求。

关键词: 水面目标检测, YOLOv8, 轻量化改进, Slim-Neck设计范式, 注意力机制

Abstract:

A lightweight water surface object detection algorithm SOE-YOLO based on YOLOv8 was proposed to address the issues of missed and false detections in complex and ever-changing water surface environments, as well as limited computing resources on the detection platform. Firstly, the Slim-Neck paradigm containing GSConv was employed to improve the weight of the model in the Neck part. Secondly, the Backbone section was reconstructed using a lightweight convolutional ODConv (omni-dimensional dynamic convolution) module, thereby reducing the number of parameters to improve the detection speed of the network. Finally, the multi-scale attention mechanism EMA (effective multi-scale attention) was introduced to enhance the network’s capability in extracting multi-scale features, thereby enhancing the small target detection accuracy. The experimental results on the WSODD (water surface object detection) test set demonstrated that the parameter and computational quantities of the SOE-YOLO model were 2.8 M and 6.6 GFLOPs, respectively, which were reduced by 12.5% and 18.6% compared to the original model. At the same time, mAP @% 0.5 and mAP@0.5-.95 reached 79.9% and 47.2%, respectively, which were 2.4% and 1.6% higher than the original model, and the missed detection rate decreased significantly, outperforming the current popular object detection algorithms. The FPS reached 64.25, meeting the requirements of real-time detection of surface targets. It could achieve better detection performance, while achieving lightweight, meeting deployment requirements in computing-resource-constrained environments.

Key words: water surface object detection, YOLOV8, lightweight improvement, Slim-Neck design paradigm, attention mechanisms

中图分类号: