图学学报 ›› 2024, Vol. 45 ›› Issue (4): 779-790.DOI: 10.11996/JG.j.2095-302X.2024040779
收稿日期:
2024-04-18
接受日期:
2024-06-13
出版日期:
2024-08-31
发布日期:
2024-09-03
通讯作者:
李栋(1984-),男,副教授,博士。主要研究方向为计算机视觉、信息处理与智能控制。E-mail:lidong@imut.edu.cn第一作者:
赵磊(1999-),男,硕士研究生。主要研究方向为计算机视觉、信息处理与智能控制。E-mail:zhaolei990323@163.com
基金资助:
ZHAO Lei(), LI Dong(
), FANG Jiandong, CAO Qi
Received:
2024-04-18
Accepted:
2024-06-13
Published:
2024-08-31
Online:
2024-09-03
Contact:
LI Dong (1984-), associate professor, Ph.D. His main research interests cover computer vision, information processing and intelligent control, etc. E-mail:lidong@imut.edu.cnFirst author:
ZHAO Lei (1999-), master student. His main research interests cover computer vision, information processing and intelligent control. E-mail:zhaolei990323@163.com
Supported by:
摘要:
针对当前算法在面对交通标志时存在识别精度低、检测错误较多等问题,提出了一种基于YOLOv5优化的交通标志检测方法。在Backbone部分,为了获得不同大小的感受野,不同复杂度的特征,并增强特征图的重要特征,抑制冗余特征,使用DBB重参数模块代替Conv卷积,并加入SE注意力机制;在Neck部分,设计了新的SLA Neck,聚合来自不同层的特征图,有效防止小目标特征信息损失,对融合后的特征进行上采样,增加小目标检测层,增强浅层语义信息;在Head部分引入IoU-Aware查询选择,即将IoU分数引入分类分支的目标函数,预测框与GT的IoU作为类别预测的标签,以实现对正样本分类和定位的一致性约束;使用SIoU损失函数代替CIoU损失函数,考虑真实框与预测框之间的方向,提升收敛速度和推理能力。实验结果表明,在TT100K数据集下,方法相较于YOLOv5m,计算量减少了3.3%,参数量减少了34.8%,而mAP和mAP@50:95分别提升了13.8%和10.4%。实验说明,该模型在减少模型参数量及大小的同时提高了检测精度,具有应用价值。
中图分类号:
赵磊, 李栋, 房建东, 曹琪. 面向交通标志的改进YOLO目标检测算法[J]. 图学学报, 2024, 45(4): 779-790.
ZHAO Lei, LI Dong, FANG Jiandong, CAO Qi. Improved YOLO object detection algorithm for traffic signs[J]. Journal of Graphics, 2024, 45(4): 779-790.
Neck | Params/M | GFLOPs | mAP | mAP@50:95 |
---|---|---|---|---|
Slim | 11.1 | 21.7 | 0.757 | 0.567 |
ASF | 13.5 | 30.9 | 0.775 | 0.577 |
SLA | 13.6 | 29.5 | 0.781 | 0.580 |
表1 颈部网络对比实验
Table 1 Comparative experiments with neck net works
Neck | Params/M | GFLOPs | mAP | mAP@50:95 |
---|---|---|---|---|
Slim | 11.1 | 21.7 | 0.757 | 0.567 |
ASF | 13.5 | 30.9 | 0.775 | 0.577 |
SLA | 13.6 | 29.5 | 0.781 | 0.580 |
模型 | GFLOPs | mAP(0.7) | mAP@50:95 |
---|---|---|---|
DBB+EMA | 30.1 | 0.758 | 0.563 |
DBB+SE | 29.6 | 0.770 | 0.571 |
BB+CA | 29.7 | 0.743 | 0.548 |
DBB+SimAM | 31.1 | 0.762 | 0.576 |
DBB+CBAM | 29.8 | 0.767 | 0.570 |
DBB+ECA | 29.8 | 0.758 | 0.551 |
表2 注意力模块对比实验
Table 2 Comparative experiment with attention modules
模型 | GFLOPs | mAP(0.7) | mAP@50:95 |
---|---|---|---|
DBB+EMA | 30.1 | 0.758 | 0.563 |
DBB+SE | 29.6 | 0.770 | 0.571 |
BB+CA | 29.7 | 0.743 | 0.548 |
DBB+SimAM | 31.1 | 0.762 | 0.576 |
DBB+CBAM | 29.8 | 0.767 | 0.570 |
DBB+ECA | 29.8 | 0.758 | 0.551 |
IoU-Aware | DBB | DBB-SE | SLA | 小尺寸检测层 | SIoU | Precision | Recall | Params/M | GFLOPs | mAP(0.7) | mAP@50:95 |
---|---|---|---|---|---|---|---|---|---|---|---|
0.728 | 0.566 | 7 074 853 | 16.0 | 0.602 | 0.446 | ||||||
√ | 0.845 | 0.728 | 11 003 844 | 22.8 | 0.750 | 0.555 | |||||
√ | √ | 0.844 | 0.736 | 12 994 788 | 27.6 | 0.759 | 0.563 | ||||
√ | √ | √ | 0.835 | 0.773 | 13 324 772 | 29.6 | 0.770 | 0.570 | |||
√ | √ | √ | √ | 0.855 | 0.781 | 13 644 342 | 29.5 | 0.781 | 0.581 | ||
√ | √ | √ | √ | √ | 0.865 | 0.789 | 13 694 324 | 46.8 | 0.807 | 0.613 | |
√ | √ | √ | √ | √ | √ | 0.874 | 0.791 | 13 694 324 | 46.8 | 0.812 | 0.615 |
表3 消融实验
Table 3 Ablation experiment
IoU-Aware | DBB | DBB-SE | SLA | 小尺寸检测层 | SIoU | Precision | Recall | Params/M | GFLOPs | mAP(0.7) | mAP@50:95 |
---|---|---|---|---|---|---|---|---|---|---|---|
0.728 | 0.566 | 7 074 853 | 16.0 | 0.602 | 0.446 | ||||||
√ | 0.845 | 0.728 | 11 003 844 | 22.8 | 0.750 | 0.555 | |||||
√ | √ | 0.844 | 0.736 | 12 994 788 | 27.6 | 0.759 | 0.563 | ||||
√ | √ | √ | 0.835 | 0.773 | 13 324 772 | 29.6 | 0.770 | 0.570 | |||
√ | √ | √ | √ | 0.855 | 0.781 | 13 644 342 | 29.5 | 0.781 | 0.581 | ||
√ | √ | √ | √ | √ | 0.865 | 0.789 | 13 694 324 | 46.8 | 0.807 | 0.613 | |
√ | √ | √ | √ | √ | √ | 0.874 | 0.791 | 13 694 324 | 46.8 | 0.812 | 0.615 |
models | Params/M | GFLOPs | mAP |
---|---|---|---|
Faster R-CNN | 41.6 | 195.8 | 0.551 |
YOLOv3 | 61.7 | 185.3 | 0.772 |
YOLOv4 | 96.9 | 141.7 | 0.643 |
YOLOv5s | 7.2 | 16.0 | 0.602 |
YOLOv8s | 11.2 | 28.6 | 0.589 |
YOLOv5m | 21.0 | 48.4 | 0.673 |
YOLOv6 | 31.3 | - | 0.742 |
YOLOv7 | 36.6 | 103.6 | 0.563 |
YOLOv7-tiny | 6.1 | 13.1 | 0.370 |
YOLOv8 | 11.2 | 28.6 | 0.654 |
SSD | 25.0 | 274.05 | 0.268 |
文献[29] | 2.8 | - | 0.719 |
文献[30] | - | - | 0.752 |
文献[31] | - | - | 0.742 |
Deformable DETR | 40.0 | 128.0 | 0.771 |
RT-DETR-l | 32.0 | 103.6 | 0.796 |
Ours | 13.7 | 46.8 | 0.812 |
表4 TT100K对比实验
Table 4 TT100K Contrast experiment
models | Params/M | GFLOPs | mAP |
---|---|---|---|
Faster R-CNN | 41.6 | 195.8 | 0.551 |
YOLOv3 | 61.7 | 185.3 | 0.772 |
YOLOv4 | 96.9 | 141.7 | 0.643 |
YOLOv5s | 7.2 | 16.0 | 0.602 |
YOLOv8s | 11.2 | 28.6 | 0.589 |
YOLOv5m | 21.0 | 48.4 | 0.673 |
YOLOv6 | 31.3 | - | 0.742 |
YOLOv7 | 36.6 | 103.6 | 0.563 |
YOLOv7-tiny | 6.1 | 13.1 | 0.370 |
YOLOv8 | 11.2 | 28.6 | 0.654 |
SSD | 25.0 | 274.05 | 0.268 |
文献[29] | 2.8 | - | 0.719 |
文献[30] | - | - | 0.752 |
文献[31] | - | - | 0.742 |
Deformable DETR | 40.0 | 128.0 | 0.771 |
RT-DETR-l | 32.0 | 103.6 | 0.796 |
Ours | 13.7 | 46.8 | 0.812 |
models | Params/M | GFLOPs | mAP |
---|---|---|---|
Faster R-CNN | 41.6 | 195.8 | 0.757 |
YOLOv3 | 61.7 | 185.3 | 0.581 |
YOLOv4 | 96.9 | 141.7 | 0.742 |
YOLOv5 | 7.2 | 16.1 | 0.798 |
YOLOv7 | 36.3 | 103.6 | 0.742 |
YOLOv8 | 11.2 | 28.6 | 0.790 |
文献[32] | - | - | 0.808 |
文献[33] | 2.6 | 24.7 | 0.856 |
文献[34] | 8.9 | - | 0.918 |
RT-DETR-l | 32.0 | 103.6 | 0.821 |
Ours | 13.7 | 46.8 | 0.921 |
表5 CCTSDB对比实验
Table 5 CCTSDB Contrast experiment
models | Params/M | GFLOPs | mAP |
---|---|---|---|
Faster R-CNN | 41.6 | 195.8 | 0.757 |
YOLOv3 | 61.7 | 185.3 | 0.581 |
YOLOv4 | 96.9 | 141.7 | 0.742 |
YOLOv5 | 7.2 | 16.1 | 0.798 |
YOLOv7 | 36.3 | 103.6 | 0.742 |
YOLOv8 | 11.2 | 28.6 | 0.790 |
文献[32] | - | - | 0.808 |
文献[33] | 2.6 | 24.7 | 0.856 |
文献[34] | 8.9 | - | 0.918 |
RT-DETR-l | 32.0 | 103.6 | 0.821 |
Ours | 13.7 | 46.8 | 0.921 |
[1] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// The 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, 81(1): 580-587. |
[2] | GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision. New York: IEEE Press 2015: 1440-1448. |
[3] |
REN S Q, HE K M, GIRSHICK R, et al. Faster r-cnn: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[4] | CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 6154-6162. |
[5] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788. |
[6] | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2024-02-18]. http://arxiv.org/abs/1804.02767. |
[7] | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2024-02-18]. http://arxiv.org/abs/2004.10934. |
[8] | LI C Y, LI L L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. [2024-02-18]. http://arxiv.org/abs/2209.02976. |
[9] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 7464-7475. |
[10] | LONG X, DENG K P, WANG G Z, et al. PP-YOLO: an effective and efficient implementation of object detector[EB/OL]. [2024-02-18]. https://arxiv.org/pdf/2007.12099v1. |
[11] | GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. [2024-02-18]. http://arxiv.org/abs/2107.08430. |
[12] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector[C]// European Conference on Computer Vision. Cham: Springer, 2016: 21-37. |
[13] | FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector[EB/OL]. [2024-02-18]. http://arxiv.org/abs/1701.06659. |
[14] | 张毅, 龚致远, 韦文闻. 基于改进Faster R-CNN模型的交通标志检测[J]. 激光与光电子学进展, 2020, 57(18): 181015. |
ZHANG Y, GONG Z Y, WEI W W. Traffic sign detection based on improved faster R-CNN model[J]. Laser & Optoelectronics Progress, 2020, 57(18): 181015 (in Chinese). | |
[15] |
HAN C, GAO G Y, ZHANG Y. Real-time small traffic sign detection with revised faster-RCNN[J]. Multimedia Tools and Applications, 2019, 78(10): 13263-13278.
DOI |
[16] |
冯爱棋, 吴小俊, 徐天阳. 融合注意力机制和上下文信息的实时交通标志检测算法[J]. 计算机科学与探索, 2023, 17(11): 2676-2688.
DOI |
FENG A Q, WU X J, XU T Y. Real-time traffic sign detection algorithm combining attention mechanism and contextual information[J]. Jour-nal of Frontiers of Computer Science and Technology, 2023, 17(11): 2676-2688 (in Chinese). | |
[17] |
刘紫燕, 袁磊, 朱明成, 等. 融合SPP和改进FPN的YOLOv3交通标志检测[J]. 计算机工程与应用, 2021, 57(7): 164-170.
DOI |
LIU Z Y, YUAN L, ZHU M C, et al. YOLOv3 traffic sign detection based on SPP and improved FPN[J]. Computer Engineering and Applications, 2021, 57(7): 164-170 (in Chinese).
DOI |
|
[18] |
杨永波, 李栋, 房建东, 等. 面向嵌入式端的轻量级交通信号灯检测算法[J]. 计算机工程与应用, 2024, 60(13): 361-368.
DOI |
YANG YB, LI D, FANG J D, et al. Lightweight traffic signal light detection algorithm for the embedded terminal[J]. Computer Engineering and Applications, 2024, 60(13): 361-368 (in Chinese). | |
[19] | 李大湘, 吉展, 刘颖, 等. 改进YOLOv7遥感图像目标检测算法[EB/OL]. [2024-04-18]. https://kns.cnki.net/kcms2/article/abstract?v=n6BwBobH4uuyhaohXNotWIn6vQFd3Q_JqEQPLueEwbKNDvFqVx25_5lOC1ciz_54Jr1hdXOh80TSX5k2Tr44fUss_NQ038vn0vBiKN3AghPdb4h6KHn9S5nhgRl0fH9CWftgVTxLC-IYCCe-DAQq2mQSIlfl_pDaMUEhZuh9ayjaRrXR1klBJ2S3JrmzWP_oaWLANdRCHFw=&uniplatform=NZKPT&language=CHS. |
LI D X, JI Z, LIU Y, et al. Improving YOLOv7 remote sensing image target detection algorithm[EB/OL]. [2024-04-18]. https://kns.cnki.net/kcms2/article/abstract?v=n6BwBobH4uuyhaohXNotWIn6vQFd3Q_JqEQPLueEwbKNDvFqVx25_5lOC1ciz_54Jr1hdXOh80TSX5k2Tr44fUss_NQ038vn0vBiKN3AghPdb4h6KHn9S5nhgRl0fH9CWftgVTxLC-IYCCe-DAQq2mQSIlfl_pDaMUEhZuh9ayjaRrXR1klBJ2S3JrmzWP_oaWLANdRCHFw=&uniplatform=NZKPT&language=CHS (in Chinese). | |
[20] | DING X H, ZHANG X Y, HAN J G, et al. Diverse branch block: building a convolution as an inception-like unit[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 10881-10890. |
[21] |
李跃华, 仲新, 姚章燕, 等. 基于改进YOLOv5s的着装不规范检测算法研究[J]. 图学学报, 2024, 45(3): 433-445.
DOI |
LI Y H, ZHONG X, YAO Z Y, et al. Detection of dress code violations based on improved YOLOv5s[J]. Journal of Graphics, 2024, 45(3): 433-445 (in Chinese).
DOI |
|
[22] |
胡欣, 胡帅, 马丽军, 等. 基于融合MBAM与YOLOv5的PCB缺陷检测方法[J]. 图学学报, 2024, 45(1): 47-55.
DOI |
HU X, HU S, MA L J, et al. PCB defect detection method based on fusion of MBAM and YOLOv5[J]. Journal of Graphics, 2024, 45(1): 47-55 (in Chinese).
DOI |
|
[23] |
魏陈浩, 杨睿, 刘振丙, 等. 具有双层路由注意力的YOLOv8道路场景目标检测方法[J]. 图学学报, 2023, 44(6): 1104-1111.
DOI |
WEI C H, YANG R, LIU Z B, et al. YOLOv8 with bi-level routing attention for road scene object detection[J]. Journal of Graphics, 2023, 44(6): 1104-1111 (in Chinese). | |
[24] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7132-7141. |
[25] | LI H L, LI J, WEI H B, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[EB/OL]. [2024-02-18]. http://arxiv.org/abs/2206.02424. |
[26] | KANG M, TING C M, TING F F, et al. ASF-YOLO: a novel YOLO model with attentional scale sequence fusion for cell instance seg-mentation[EB/OL]. [2024-02-18]. http://arxiv.org/abs/2312.06458. |
[27] | LV W Y, Zhao Y A, XU S L, et al. DETRs Beat YOLOs on Real-time Object Detection[EB/OL]. [2024-02-18]. https://arxiv.org/pdf/2304.0869v2. |
[28] | GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[EB/OL]. [2024-02-18]. http://arxiv.org/abs/2205.12740. |
[29] |
熊恩杰, 张荣芬, 刘宇红, 等. 面向交通标志的Ghost-YOLOv8检测算法[J]. 计算机工程与应用, 2023, 59(20): 200-207.
DOI |
XIONG E J, ZHANG R F, LIU Y H, et al. Ghost-YOLOv8 Detection Algo-rithm for Traffic Signs[J]. Computer Engineering and Applications, 2023, 59(20): 200-207 (in Chinese).
DOI |
|
[30] |
刘紫燕, 袁磊, 朱明成, 等. 融合SPP和改进FPN的YOLOv3交通标志检测[J]. 计算机工程与应用, 2021, 57(7): 164-170.
DOI |
LIU Z Y, YUAN L, ZHU M C, et al. YOLOv3 Traffic sign Detection based on SPP and Improved FPN[J]. Computer Engineering and Applications, 2021, 57(7): 164-170 (in Chinese).
DOI |
|
[31] |
韦强, 胡晓阳, 赵虹鑫. 改进YOLOv5的交通标志检测方法[J]. 计算机工程与应用, 2023, 59(13): 229-237.
DOI |
WEI Q, HU X Y, ZHAO H X. Improved traffic sign detection method for YOLOv5[J]. Computer Engineering and Applications, 2023, 59(13): 229-237 (in Chinese).
DOI |
|
[32] |
田鹏, 毛力. 改进YOLOv8的道路交通标志目标检测算法[J]. 计算机工程与应用, 2024, 60(8): 202-212.
DOI |
TIAN P, MAO L. Improved YOLOv8 object detection algorithm for traffic sign target[J]. Computer Engineering and Applications, 2024, 60(8): 202-212 (in Chinese).
DOI |
|
[33] |
胡昭华, 王莹. 改进YOLOv5的交通标志检测算法[J]. 计算机工程与应用, 2023, 59(1): 82-91.
DOI |
HU Z H, WANG Y. Improved Traffic Sign Detection Algorithm for YOLOv5[J]. Computer Engineering and Applications, 2023, 59(1): 82-91 (in Chinese).
DOI |
|
[34] |
朱强军, 胡斌, 汪慧兰, 等. 基于轻量化YOLOv8s交通标志的检测[J]. 图学学报. 2024, 45(3): 422-432.
DOI |
ZHU Q J, HU B, WANG H L, et al. Detection of traffic signs based on lightweight YOLOv8s[J]. Journal of Graphics, 2024, 45(3): 422-432 (in Chinese).
DOI |
[1] | 胡凤阔 , 叶兰 , 谭显峰 , 张钦展 , 胡志新 , 方清 , 王磊 , 满孝锋 . 一种基于改进 YOLOv8 的轻量化路面病害检测算法[J]. 图学学报, 2024, 45(5): 892-900. |
[2] | 刘义艳 , 郝婷楠 , 贺晨 , 常英杰 . 基于 DBBR-YOLO 的光伏电池表面缺陷检测[J]. 图学学报, 2024, 45(5): 913-921. |
[3] | 吴沛宸 , 袁立宁 , 胡皓 , 刘钊 , 郭放 . 基于注意力特征融合的视频异常行为检测[J]. 图学学报, 2024, 45(5): 922-929. |
[4] | 刘丽, 张起凡, 白宇昂, 黄凯烨. 结合Swin Transformer的多尺度遥感图像变化检测研究[J]. 图学学报, 2024, 45(5): 941-956. |
[5] | 章东平 , 魏杨悦 , 何数技 , 徐云超 , 胡海苗 , 黄文君 . 特征融合与层间传递:一种基于Anchor DETR改进的目标检测方法[J]. 图学学报, 2024, 45(5): 968-978. |
[6] | 谢国波, 林松泽, 林志毅, 吴陈锋, 梁立辉. 基于改进YOLOv7-tiny的道路病害检测算法[J]. 图学学报, 2024, 45(5): 987-997. |
[7] | 熊超 , 王云艳 , 罗雨浩 . 特征对齐与上下文引导的多视图三维重建[J]. 图学学报, 2024, 45(5): 1008-1016. |
[8] | 彭文, 林金炜. 基于空间信息关注和纹理增强的短小染色体分类方法[J]. 图学学报, 2024, 45(5): 1017-1029. |
[9] | 刘宗明 , 洪唯 , 龙睿 , 祝越 , 张小宇 . 基于自注意机制的乳源瑶绣自动生成与应用研究[J]. 图学学报, 2024, 45(5): 1096-1105. |
[10] | 李大湘, 吉展, 刘颖, 唐垚. 改进YOLOv7遥感图像目标检测算法[J]. 图学学报, 2024, 45(4): 650-658. |
[11] | 魏敏, 姚鑫. 基于多尺度与注意力机制的两阶段风暴单体外推研究[J]. 图学学报, 2024, 45(4): 696-704. |
[12] | 曾志超, 徐玥, 王景玉, 叶元龙, 黄志开, 王欢. 基于SOE-YOLO轻量化的水面目标检测算法[J]. 图学学报, 2024, 45(4): 736-744. |
[13] | 武兵, 田莹. 基于注意力机制的多尺度道路损伤检测算法研究[J]. 图学学报, 2024, 45(4): 770-778. |
[14] | 朱强军, 胡斌, 汪慧兰, 王杨. 基于轻量化YOLOv8s交通标志的检测[J]. 图学学报, 2024, 45(3): 422-432. |
[15] | 李跃华, 仲新, 姚章燕, 胡彬. 基于改进YOLOv5s的着装不规范检测算法研究[J]. 图学学报, 2024, 45(3): 433-445. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||