图学学报 ›› 2024, Vol. 45 ›› Issue (5): 901-912.DOI: 10.11996/JG.j.2095-302X.2024050901
王亚茹(), 冯利龙, 宋晓轲, 屈卓, 杨珂, 王乾铭(
), 翟永杰
收稿日期:
2024-05-08
修回日期:
2024-06-25
出版日期:
2024-10-31
发布日期:
2024-10-31
通讯作者:
王乾铭(1995-),男,讲师,博士。主要研究方向为电力视觉。E-mail:qianmingwang@ncepu.edu.cn第一作者:
王亚茹(1990-),女,讲师,博士。主要研究方向为输电线路元件检测等。E-mail:wangyaru@ncepu.edu.cn
基金资助:
WANG Yaru(), FENG Lilong, SONG Xiaoke, QU Zhuo, YANG Ke, WANG Qianming(
), ZHAI Yongjie
Received:
2024-05-08
Revised:
2024-06-25
Published:
2024-10-31
Online:
2024-10-31
Contact:
WANG Qianming (1995-), lecturer, Ph.D. His main research interest covers power vision. E-mail:qianmingwang@ncepu.edu.cnFirst author:
WANG Yaru (1990-), lecturer, Ph.D. Her main research interests cover detection of transmission line components, etc. E-mail:wangyaru@ncepu.edu.cn
Supported by:
摘要:
基于无人机航拍图像的异物检测是输电线路智能巡检中的重要环节。YOLO目标检测算法精度高、速度快,是目前的主流算法。但在进行输电线路异物检测时,由于异物目标尺度多变、特征不显著,易出现误检、漏检等问题,提出一种用于输电线路异物检测的YOLOv8模型(TFD-YOLOv8)。首先,在YOLOv8颈部网络构建双分支下采样模块,截留下采样过程中易丢失的尺度相关细节信息,实现语义信息和细节信息的高效融合,提升不同尺度特征图的信息一致性。然后,在主干网络插入混合增强注意力模块,同时提取图像的全局和局部特征,分别生成空间注意力和通道注意力,得到一个包含局部信息、全局信息、空间信息和通道信息的混合增强注意力,增强网络对目标关键特征的捕捉能力。实验结果表明,与基线模型相比,本文方法的平均检测精度提升了6.7%,准确率和召回率分别提升了12.9%和5.1%,与多个现有目标检测方法相比,该方法在检测精度和复杂度上均具有优势。
中图分类号:
王亚茹, 冯利龙, 宋晓轲, 屈卓, 杨珂, 王乾铭, 翟永杰. TFD-YOLOv8:一种用于输电线路的异物检测方法[J]. 图学学报, 2024, 45(5): 901-912.
WANG Yaru, FENG Lilong, SONG Xiaoke, QU Zhuo, YANG Ke, WANG Qianming, ZHAI Yongjie. TFD-YOLOv8: a transmission line foreign object detection method[J]. Journal of Graphics, 2024, 45(5): 901-912.
硬件名称 | 型号 |
---|---|
CPU | Intel(R) Core(TM) i9-10850K |
GPU | GeForce RTX 3080 |
操作系统 | Ubuntu 18.04 |
框架 | Pytorch 1.12.0 |
计算架构 | Cuda 11.3 |
语言 | Python 3.10 |
表1 实验环境
Table 1 Experimental environment
硬件名称 | 型号 |
---|---|
CPU | Intel(R) Core(TM) i9-10850K |
GPU | GeForce RTX 3080 |
操作系统 | Ubuntu 18.04 |
框架 | Pytorch 1.12.0 |
计算架构 | Cuda 11.3 |
语言 | Python 3.10 |
图4 部分图像((a)大尺度鸟巢;(b)小尺度鸟巢;(c)鸟巢遮挡;(d)风筝;(e)垃圾;(f)气球)
Fig. 4 Partial images ((a) Large-scale nest; (b) Small-scale nest; (c) Obscured nest; (d) Kite; (e) Trash; (f) Balloon)
Method | P | R | AP50 | mAP50 | mAP50:95 | |
---|---|---|---|---|---|---|
nest类 | other类 | |||||
YOLOv8s (基线模型) | 78.4 | 57.8 | 69.5 | 63.5 | 66.5 | 33.0 |
YOLOv8s+MIX | 84.9 | 61.8 | 71.9 | 69.1 | 70.5 | 35.1 |
YOLOv8s+DBD | 89.3 | 61.4 | 70.3 | 69.1 | 69.7 | 34.2 |
Ours | 91.3 | 62.9 | 73.0 | 73.3 | 73.2 | 35.8 |
表2 不同模块的消融实验结果/%
Table 2 Results of ablation experiments/%
Method | P | R | AP50 | mAP50 | mAP50:95 | |
---|---|---|---|---|---|---|
nest类 | other类 | |||||
YOLOv8s (基线模型) | 78.4 | 57.8 | 69.5 | 63.5 | 66.5 | 33.0 |
YOLOv8s+MIX | 84.9 | 61.8 | 71.9 | 69.1 | 70.5 | 35.1 |
YOLOv8s+DBD | 89.3 | 61.4 | 70.3 | 69.1 | 69.7 | 34.2 |
Ours | 91.3 | 62.9 | 73.0 | 73.3 | 73.2 | 35.8 |
图5 基线模型添加MIX模块前后的热力图对比场景((a)原图;(b)目标放大图;(c)基线模型;(d)基线模型+MIN)
Fig. 5 Comparison of thermograms before and after the addition of the MIX module to the baseline model ((a) Original drawing; (b) Zoom in on the target; (c) Baseline model; (d) Baseline model+MIX)
图6 基线模型添加DBD模块前后的下采样特征可视化对比((a)场景1;(b)场景2;(c)场景3;(d)场景4;(e)场景5)
Fig. 6 Comparison of downsampled feature visualizations before and after adding the DBD module to the baseline model ((a) Scenario 1; (b) Scenario 2; (c) Scenario 3; (d) Scenario 4; (e) Scenario 5)
目标尺度 | Method | P/% | R/% | AP50/% | mAP50/% | mAP50:95/% | |
---|---|---|---|---|---|---|---|
nest类 | other类 | ||||||
小尺度 | YOLOv8s | 80.1 | 60.7 | 50.2 | 99.5 | 74.8 | 39.1 |
YOLOv8s+MIX | 85.7 | 70.2 | 54.1 | 99.5 | 76.8 | 40.7 | |
YOLOv8s+DBD | 85.3 | 71.3 | 56.7 | 99.5 | 78.1 | 39.9 | |
Ours | 86.1 | 70.5 | 61.2 | 99.5 | 80.3 | 42.3 | |
中尺度 | YOLOv8s | 85.3 | 68.0 | 76.3 | 70.3 | 73.3 | 34.9 |
YOLOv8s+MIX | 85.9 | 65.4 | 80.4 | 73.2 | 76.8 | 35.8 | |
YOLOv8s+DBD | 91.0 | 68.5 | 76.1 | 77.2 | 76.7 | 35.7 | |
Ours | 95.0 | 68.6 | 76.5 | 75.1 | 75.8 | 34.2 | |
大尺度 | YOLOv8s | 91.4 | 62.0 | 87.4 | 56.9 | 72.1 | 39.5 |
YOLOv8s+MIX | 89.9 | 65.2 | 86.7 | 64.9 | 75.8 | 42.3 | |
YOLOv8s+DBD | 88.4 | 66.9 | 86.0 | 61.6 | 73.8 | 41.0 | |
Ours | 91.4 | 65.8 | 87.5 | 69.5 | 78.5 | 43.5 |
表3 不同尺度目标的检测结果
Table 3 Experimental results for different scale targets
目标尺度 | Method | P/% | R/% | AP50/% | mAP50/% | mAP50:95/% | |
---|---|---|---|---|---|---|---|
nest类 | other类 | ||||||
小尺度 | YOLOv8s | 80.1 | 60.7 | 50.2 | 99.5 | 74.8 | 39.1 |
YOLOv8s+MIX | 85.7 | 70.2 | 54.1 | 99.5 | 76.8 | 40.7 | |
YOLOv8s+DBD | 85.3 | 71.3 | 56.7 | 99.5 | 78.1 | 39.9 | |
Ours | 86.1 | 70.5 | 61.2 | 99.5 | 80.3 | 42.3 | |
中尺度 | YOLOv8s | 85.3 | 68.0 | 76.3 | 70.3 | 73.3 | 34.9 |
YOLOv8s+MIX | 85.9 | 65.4 | 80.4 | 73.2 | 76.8 | 35.8 | |
YOLOv8s+DBD | 91.0 | 68.5 | 76.1 | 77.2 | 76.7 | 35.7 | |
Ours | 95.0 | 68.6 | 76.5 | 75.1 | 75.8 | 34.2 | |
大尺度 | YOLOv8s | 91.4 | 62.0 | 87.4 | 56.9 | 72.1 | 39.5 |
YOLOv8s+MIX | 89.9 | 65.2 | 86.7 | 64.9 | 75.8 | 42.3 | |
YOLOv8s+DBD | 88.4 | 66.9 | 86.0 | 61.6 | 73.8 | 41.0 | |
Ours | 91.4 | 65.8 | 87.5 | 69.5 | 78.5 | 43.5 |
图7 本文方法与基线模型检测可视化对比((a)误检1;(b)误检2;(c)误检3;(d)漏检1;(e)漏检2;(f)漏检3)
Fig. 7 Comparison of the methods with the baseline model detection visualization ((a) Misdetection 1; (b) Misdetection 2; (c) Misdetection 3; (d) Omission 1; (e) Omission 2; (f) Omission 3)
Method | P/% | R/% | AP50/% | mAP50/% | 参数量/M | |
---|---|---|---|---|---|---|
nest类 | other类 | |||||
基线模型YOLOv8s | 78.4 | 57.8 | 69.5 | 63.5 | 66.5 | 11.126 3 |
ECA[ | 84.3 | 59.9 | 70.7 | 68.3 | 69.5 | 11.126 4 |
CA[ | 82.3 | 60.4 | 70.6 | 67.0 | 69.1 | 11.159 0 |
EMA[ | 83.5 | 60.7 | 70.0 | 67.3 | 68.7 | 11.159 8 |
SE[ | 81.8 | 60.9 | 72.0 | 64.8 | 68.4 | 11.152 6 |
SA[ | 82.0 | 61.4 | 70.7 | 67.7 | 69.2 | 11.126 8 |
GAM[ | 83.7 | 59.4 | 71.6 | 66.9 | 69.2 | 16.380 6 |
MIX(Ours) | 84.9 | 61.8 | 71.9 | 69.1 | 70.5 | 11.126 4 |
表4 不同注意力模块性能对比
Table 4 Comparison results of attention modules
Method | P/% | R/% | AP50/% | mAP50/% | 参数量/M | |
---|---|---|---|---|---|---|
nest类 | other类 | |||||
基线模型YOLOv8s | 78.4 | 57.8 | 69.5 | 63.5 | 66.5 | 11.126 3 |
ECA[ | 84.3 | 59.9 | 70.7 | 68.3 | 69.5 | 11.126 4 |
CA[ | 82.3 | 60.4 | 70.6 | 67.0 | 69.1 | 11.159 0 |
EMA[ | 83.5 | 60.7 | 70.0 | 67.3 | 68.7 | 11.159 8 |
SE[ | 81.8 | 60.9 | 72.0 | 64.8 | 68.4 | 11.152 6 |
SA[ | 82.0 | 61.4 | 70.7 | 67.7 | 69.2 | 11.126 8 |
GAM[ | 83.7 | 59.4 | 71.6 | 66.9 | 69.2 | 16.380 6 |
MIX(Ours) | 84.9 | 61.8 | 71.9 | 69.1 | 70.5 | 11.126 4 |
检测方法 | mAP50 /% | mAP50:95 /% | 参数 /M | 权重 /MB |
---|---|---|---|---|
Faster R-CNN[ | 67.8 | 27.8 | 41.35 | 315.64 |
Cascade R-CNN[ | 67.7 | 28.9 | 69.15 | 528.83 |
DynamicR-CNN[ | 64.5 | 27.4 | 41.75 | 319.31 |
TPH-YOLOv5[ | 61.6 | 27.4 | 45.37 | 88.11 |
YOLOF[ | 61.4 | 30.0 | 42.36 | 322.70 |
YOLOv7[ | 67.6 | 32.5 | 36.48 | 74.84 |
YOLOv8s[ | 66.5 | 33.0 | 11.12 | 21.48 |
Ours | 73.2 | 35.8 | 13.48 | 26.04 |
表5 不同方法的检测性能对比
Table 5 Comparison of different model performances
检测方法 | mAP50 /% | mAP50:95 /% | 参数 /M | 权重 /MB |
---|---|---|---|---|
Faster R-CNN[ | 67.8 | 27.8 | 41.35 | 315.64 |
Cascade R-CNN[ | 67.7 | 28.9 | 69.15 | 528.83 |
DynamicR-CNN[ | 64.5 | 27.4 | 41.75 | 319.31 |
TPH-YOLOv5[ | 61.6 | 27.4 | 45.37 | 88.11 |
YOLOF[ | 61.4 | 30.0 | 42.36 | 322.70 |
YOLOv7[ | 67.6 | 32.5 | 36.48 | 74.84 |
YOLOv8s[ | 66.5 | 33.0 | 11.12 | 21.48 |
Ours | 73.2 | 35.8 | 13.48 | 26.04 |
图8 不同方法的检测结果对比((a)误检1;(b)误检2;(c)漏检1;(d)漏检2;(e)漏检3)
Fig. 8 Comparison of detection results using different methods ((a) Misdetection 1; (b) Misdetection 2; (c) Omission 1; (d) Omission 2; (e) Omission 3)
[1] | 翟永杰, 郭聪彬, 王乾铭, 等. 基于隐含空间知识融合的输电线路多金具检测方法[J]. 图学学报, 2023, 44(5): 918-927. |
ZHAI Y J, GUO C B, WANG Q M, et al. Multi-fitting detection method for transmission lines based on implicit spatial knowledge fusion[J]. Journal of Graphics, 2023, 44(5): 918-927 (in Chinese). | |
[2] |
阎光伟, 刘润泽, 焦润海, 等. 基于改进Cascade RCNN的输电线路防振锤脱落检测方法[J]. 图学学报, 2023, 44(5): 849-860.
DOI |
YAN G W, LIU R Z, JIAO R H, et al. Detection method of dropped anti-vibration hammer for transmission line based on improved Cascade RCNN[J]. Journal of Graphics, 2023, 44(5): 849-860 (in Chinese). | |
[3] | 赵振兵, 蒋志钢, 李延旭, 等. 输电线路部件视觉缺陷检测综述[J]. 中国图象图形学报, 2021, 26(11): 2545-2560. |
ZHAO Z B, JIANG Z G, LI Y X, et al. Overview of visual defect detection of transmission line components[J]. Journal of Image and Graphics, 2021, 26(11): 2545-2560 (in Chinese). | |
[4] | 赵振兵, 熊静, 李冰, 等. 基于改进Cascade R-CNN的典型金具及其部分缺陷检测方法[J]. 高电压技术, 2022, 48(3): 1060-1067. |
ZHAO Z B, XIONG J, LI B, et al. Typical fittings and its partial defect detection method based on improved cascade R-CNN[J]. High Voltage Engineering, 2022, 48(3): 1060-1067 (in Chinese). | |
[5] | WU X, YUAN P, PENG Q, et al. Detection of bird nests in overhead catenary system images for high-speed rail[J]. Pattern Recognition, 2016, 51: 242-254. |
[6] | LU J F, XU X Y, LI X, et al. Detection of bird’s nest in high power lines in the vicinity of remote campus based on combination features and cascade classifier[J]. IEEE Access, 2018, 6: 39063-39071. |
[7] | YAO N, ZHU L F. A novel foreign object detection algorithm based on GMM and K-means for power transmission line inspection[J]. Journal of Physics: Conference Series, 2020, 1607(1): 012014. |
[8] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[9] | CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 6154-6162. |
[10] | ZHANG H K, CHANG H, MA B P, et al. Dynamic R-CNN: towards high quality object detection via dynamic training[M]// Computer Vision - ECCV 2020. Cham: Springer International Publishing, 2020: 260-275. |
[11] | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2024-01-12]. http://arxiv.org/abs/2004.10934. |
[12] | ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]// 2021 IEEE/CVF International Conference on Computer Vision Workshops. New York: IEEE Press, 2021: 2778-2788. |
[13] | CHEN Q, WANG Y M, YANG T, et al. You only look one-level feature[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 13034-13043. |
[14] | LI C Y, LI L L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. [2023-12-03]. http://arxiv.org/abs/2209.02976. |
[15] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 7464-7475. |
[16] | REIS D, KUPEC J, HONG J, et al. Real-time flying object detection with YOLOv8[EB/OL]. [2023-12-13]. http://arxiv.org/abs/2305.09972. |
[17] | QIU Z B, ZHU X, LIAO C B, et al. A lightweight YOLOv4-EDAM model for accurate and real-time detection of foreign objects suspended on power lines[J]. IEEE Transactions on Power Delivery, 2023, 38(2): 1329-1340. |
[18] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]//Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. |
[19] | 张焕龙, 齐企业, 张杰, 等. 基于改进YOLOv5的输电线路鸟巢检测方法研究[J]. 电力系统保护与控制, 2023, 51(2): 151-159. |
ZHANG H L, QI Q Y, ZHANG J, et al. Bird nest detection method for transmission lines based on improved YOLOv5[J]. Power System Protection and Control, 2023, 51(2): 151-159 (in Chinese). | |
[20] | 宋智伟, 黄新波, 纪超, 等. 基于PCSA-YOLOv7 Former的输电线路连接金具及其锈蚀检测方法[J]. 中国电力, 2024, 57(6):141-152. |
SONG Z W, HUANG X B, JI C, et al. Transmission Line Connection Fittings and Corrosion Detection Method Based on Pcsa-Yolov7 Former[J]. Electric Power, 2024, 57(6): 141-152 (in Chinese). | |
[21] | 黄悦华, 刘恒冲, 陈庆, 等. 基于USRNet与改进YOLOv5x的输电线路绝缘子故障检测方法[J]. 高电压技术, 2022, 48(9): 3437-3446. |
HUANG Y H, LIU H C, CHEN Q, et al. Transmission line insulator fault detection method based on USRNet and improved YOLOv5x[J]. High Voltage Engineering, 2022, 48(9): 3437-3446 (in Chinese). | |
[22] |
郝帅, 赵新生, 马旭, 等. 基于TR-YOLOv5的输电线路多类缺陷目标检测方法[J]. 图学学报, 2023, 44(4): 667-676.
DOI |
HAO S, ZHAO X S, MA X, et al. Multi-class defect target detection method for transmission lines based on TR-YOLOv5[J]. Journal of Graphics, 2023, 44(4): 667-676 (in Chinese).
DOI |
|
[23] | 张烨, 李博涛, 尚景浩, 等. 基于多尺度卷积注意力机制的输电线路防振锤缺陷检测[J]. 电工技术学报, 2024, 39(11): 3522-3537. |
ZHANG Y, LI B T, SHANG J H, et al. Defect detection of transmission line damper based on multi-scale convolutional attention mechanism[J]. Transactions of China Electrotechnical Society, 2024, 39(11): 3522-3537 (in Chinese). | |
[24] | 郑含博, 胡思佳, 梁炎燊, 等. 基于YOLO-2MCS的输电线路走廊隐患目标检测方法[J]. 电工技术学报, 2024, 39(13): 4164-4175. |
ZHENG H B, HU S J, LIANG Y S, et al. A hidden danger object detection method for transmission line corridor based on YOLO-2MCS[J]. Transactions of China Electrotechnical Society, 2024, 39(13): 4164-4175 (in Chinese). | |
[25] | 郝帅, 张旭, 马旭, 等. 基于PKAMNet的输电线路小目标故障检测方法[J]. 高电压技术, 2023, 49(8): 3385-3394. |
HAO S, ZHANG X, MA X, et al. Small target fault detection method for transmission lines based on PKAMNet[J]. High Voltage Engineering, 2023, 49(8): 3385-3394 (in Chinese). | |
[26] | WANG Q L, WU B G, ZHU P F, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 11531-11539. |
[27] | HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 13708-13717. |
[28] | OUYANG D L, HE S, ZHANG G Z, et al. Efficient multi-scale attention module with cross-spatial learning[C]// 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. New York: IEEE Press, 2023: 1-5. |
[29] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7132-7141. |
[30] | ZHANG Q L, YANG Y B. SA-net: shuffle attention for deep convolutional neural networks[C]// 2021 IEEE International Conference on Acoustics, Speech and Signal Processing. New York: IEEE Press, 2021: 2235-2239. |
[31] | LIU Y C, SHAO Z R, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions[EB/OL]. [2024-01-12]. http://arxiv.org/abs/2112.05561. |
[1] | 李珍峰, 符世琛, 徐乐, 孟博, 张昕, 秦建军. 基于MBI-YOLOv8的煤矸石目标检测算法研究[J]. 图学学报, 2024, 45(6): 1301-1312. |
[2] | 闫建红, 冉同霄. 基于YOLOv8的轻量化无人机图像目标检测算法[J]. 图学学报, 2024, 45(6): 1328-1337. |
[3] | 胡凤阔, 叶兰, 谭显峰, 张钦展, 胡志新, 方清, 王磊, 满孝锋. 一种基于改进YOLOv8的轻量化路面病害检测算法[J]. 图学学报, 2024, 45(5): 892-900. |
[4] | 刘义艳, 郝婷楠, 贺晨, 常英杰. 基于DBBR-YOLO的光伏电池表面缺陷检测[J]. 图学学报, 2024, 45(5): 913-921. |
[5] | 李刚, 蔡泽浩, 孙华勋, 赵振兵. 基于改进YOLOv8与语义知识融合的金具缺陷检测方法研究[J]. 图学学报, 2024, 45(5): 979-986. |
[6] | 胡欣, 常娅姝, 秦皓, 肖剑, 程鸿亮. 基于改进YOLOv8和GMM图像点集匹配的双目测距方法[J]. 图学学报, 2024, 45(4): 714-725. |
[7] | 牛为华, 郭迅. 基于改进YOLOv8的船舰遥感图像旋转目标检测算法[J]. 图学学报, 2024, 45(4): 726-735. |
[8] | 曾志超, 徐玥, 王景玉, 叶元龙, 黄志开, 王欢. 基于SOE-YOLO轻量化的水面目标检测算法[J]. 图学学报, 2024, 45(4): 736-744. |
[9] | 武兵, 田莹. 基于注意力机制的多尺度道路损伤检测算法研究[J]. 图学学报, 2024, 45(4): 770-778. |
[10] | 朱强军, 胡斌, 汪慧兰, 王杨. 基于轻量化YOLOv8s交通标志的检测[J]. 图学学报, 2024, 45(3): 422-432. |
[11] | 崔克彬, 焦静颐. 基于MCB-FAH-YOLOv8的钢材表面缺陷检测算法[J]. 图学学报, 2024, 45(1): 112-125. |
[12] | 王大阜, 王静, 石宇凯, 邓志文, 贾志勇. 基于深度迁移学习的图像隐私目标检测研究[J]. 图学学报, 2023, 44(6): 1112-1120. |
[13] | 阎光伟, 刘润泽, 焦润海, 何慧. 基于改进Cascade RCNN的输电线路防振锤脱落检测方法[J]. 图学学报, 2023, 44(5): 849-860. |
[14] | 高昂, 梁兴柱, 夏晨星, 张春炯. 一种改进YOLOv8的密集行人检测算法[J]. 图学学报, 2023, 44(5): 890-898. |
[15] | 翟永杰, 郭聪彬, 王乾铭, 赵宽, 白云山, 张冀. 基于隐含空间知识融合的输电线路多金具检测方法[J]. 图学学报, 2023, 44(5): 918-927. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||