Journal of Graphics ›› 2024, Vol. 45 ›› Issue (1): 102-111.DOI: 10.11996/JG.j.2095-302X.2024010102
• Image Processing and Computer Vision • Previous Articles Next Articles
GU Tianjun1(), XIONG Suya2, LIN Xiao1,3,4(
)
Received:
2023-06-29
Accepted:
2023-09-27
Online:
2024-02-29
Published:
2024-02-29
Contact:
LIN Xiao (1978-), professor, Ph.D. Her main research interests cover image video editing and processing, artificial intelligence, etc. E-mail:About author:
GU Tianjun (2002-), undergraduate student. His main research interests cover digital image processing and image generation.
E-mail:TianjunGu_Grady@outlook.com
Supported by:
CLC Number:
GU Tianjun, XIONG Suya, LIN Xiao. Diversified generation of theatrical masks based on SASGAN[J]. Journal of Graphics, 2024, 45(1): 102-111.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024010102
网络 | SSIM | NIMA |
---|---|---|
SASGAN无矢量量化 | 0.813 6 | 5.762±1.637 |
SASGAN+矢量量化 | 0.820 7 | 5.796±1.622 |
Table 1 After adding vector quantization index contrast
网络 | SSIM | NIMA |
---|---|---|
SASGAN无矢量量化 | 0.813 6 | 5.762±1.637 |
SASGAN+矢量量化 | 0.820 7 | 5.796±1.622 |
网络 | SSIM | NIMA |
---|---|---|
SASGAN | 0.820 7 | 5.796±1.622 |
StyleGAN | 0.796 8 | 5.568±1.714 |
GAN | 0.619 2 | 4.996±1.983 |
Table 2 Comparison of results from different networks
网络 | SSIM | NIMA |
---|---|---|
SASGAN | 0.820 7 | 5.796±1.622 |
StyleGAN | 0.796 8 | 5.568±1.714 |
GAN | 0.619 2 | 4.996±1.983 |
数据增广方法 | SSIM | NIMA |
---|---|---|
DDG | 0.820 7 | 5.796±1.622 |
Traditional | 0.476 7 | 3.362±1.994 |
Table 3 Comparison of the results of different data enrichment methods
数据增广方法 | SSIM | NIMA |
---|---|---|
DDG | 0.820 7 | 5.796±1.622 |
Traditional | 0.476 7 | 3.362±1.994 |
网络 | 美观度 | 真实度 | 象征度 |
---|---|---|---|
Original | 4.2 | 4.7 | 0.98 |
SASGAN | 3.8 | 4.1 | 0.96 |
StyleGAN | 2.9 | 3.4 | 0.92 |
GAN | 1.2 | 0.8 | 0.71 |
Table 4 Supplementary experiments
网络 | 美观度 | 真实度 | 象征度 |
---|---|---|---|
Original | 4.2 | 4.7 | 0.98 |
SASGAN | 3.8 | 4.1 | 0.96 |
StyleGAN | 2.9 | 3.4 | 0.92 |
GAN | 1.2 | 0.8 | 0.71 |
网络 | 爱好者 | 在读学生 | 授课教师 |
---|---|---|---|
Original | 4.3 | 4.2 | 4.1 |
SASGAN | 4.1 | 4.0 | 3.7 |
StyleGAN | 3.0 | 2.9 | 2.7 |
GAN | 1.3 | 1.2 | 1.0 |
Table 5 Ratings of aesthetics by groups
网络 | 爱好者 | 在读学生 | 授课教师 |
---|---|---|---|
Original | 4.3 | 4.2 | 4.1 |
SASGAN | 4.1 | 4.0 | 3.7 |
StyleGAN | 3.0 | 2.9 | 2.7 |
GAN | 1.3 | 1.2 | 1.0 |
网络 | 爱好者 | 在读学生 | 授课教师 |
---|---|---|---|
Original | 4.8 | 4.7 | 4.5 |
SASGAN | 4.2 | 4.1 | 3.9 |
StyleGAN | 3.6 | 3.4 | 3.3 |
GAN | 1.1 | 0.8 | 0.7 |
Table 6 Ratings of authenticity by groups
网络 | 爱好者 | 在读学生 | 授课教师 |
---|---|---|---|
Original | 4.8 | 4.7 | 4.5 |
SASGAN | 4.2 | 4.1 | 3.9 |
StyleGAN | 3.6 | 3.4 | 3.3 |
GAN | 1.1 | 0.8 | 0.7 |
网络 | 爱好者 | 在读学生 | 授课教师 |
---|---|---|---|
Original | 0.99 | 0.98 | 0.97 |
SASGAN | 0.96 | 0.96 | 0.96 |
StyleGAN | 0.93 | 0.91 | 0.91 |
GAN | 0.72 | 0.71 | 0.69 |
Table 7 Ratings of Symbolism by Groups
网络 | 爱好者 | 在读学生 | 授课教师 |
---|---|---|---|
Original | 0.99 | 0.98 | 0.97 |
SASGAN | 0.96 | 0.96 | 0.96 |
StyleGAN | 0.93 | 0.91 | 0.91 |
GAN | 0.72 | 0.71 | 0.69 |
网络 | 爱好者 | 在读学生 | 授课教师 |
---|---|---|---|
Original | 0.015 | 0.018 | 0.008 |
SASGAN | 0.023 | 0.021 | 0.010 |
StyleGAN | 0.016 | 0.016 | 0.009 |
GAN | 0.013 | 0.017 | 0.012 |
Table 8 Variance in ratings of aesthetics by group
网络 | 爱好者 | 在读学生 | 授课教师 |
---|---|---|---|
Original | 0.015 | 0.018 | 0.008 |
SASGAN | 0.023 | 0.021 | 0.010 |
StyleGAN | 0.016 | 0.016 | 0.009 |
GAN | 0.013 | 0.017 | 0.012 |
网络 | 爱好者 | 在读学生 | 授课教师 |
---|---|---|---|
Original | 0.014 | 0.016 | 0.011 |
SASGAN | 0.018 | 0.017 | 0.009 |
StyleGAN | 0.027 | 0.019 | 0.014 |
GAN | 0.019 | 0.023 | 0.017 |
Table 9 Variance in ratings of authenticity by group
网络 | 爱好者 | 在读学生 | 授课教师 |
---|---|---|---|
Original | 0.014 | 0.016 | 0.011 |
SASGAN | 0.018 | 0.017 | 0.009 |
StyleGAN | 0.027 | 0.019 | 0.014 |
GAN | 0.019 | 0.023 | 0.017 |
网络 | 爱好者 | 在读学生 | 授课教师 |
---|---|---|---|
Original | 0.000 8 | 0.000 9 | 0.000 6 |
SASGAN | 0.000 6 | 0.000 4 | 0.000 3 |
StyleGAN | 0.000 7 | 0.000 8 | 0.000 3 |
GAN | 0.000 6 | 0.000 5 | 0.000 4 |
Table 10 Variance in ratings of symbolism by group
网络 | 爱好者 | 在读学生 | 授课教师 |
---|---|---|---|
Original | 0.000 8 | 0.000 9 | 0.000 6 |
SASGAN | 0.000 6 | 0.000 4 | 0.000 3 |
StyleGAN | 0.000 7 | 0.000 8 | 0.000 3 |
GAN | 0.000 6 | 0.000 5 | 0.000 4 |
[1] | 周大雯. 中国戏剧脸谱漫谈[J]. 戏剧之家, 2018(12): 35. |
ZHOU D W. Random talk on China’s traditional opera facial makeup[J]. Home Drama, 2018(12): 35 (in Chinese). | |
[2] | 何婧慈. 脸谱的装饰构图特色及其艺术价值[J]. 艺术品鉴, 2017(2): 198-199. |
HE J C. Characteristics of decorative composition of Facebook and its artistic value[J]. Appreciation, 2017(2): 198-199 (in Chinese). | |
[3] | ZHAO W C, ZHANG Q, LI H H, et al. Low-altitude UAV detection method based on one-staged detection framework[C]// The 2nd International Conference on Advances in Computer Technology, Information Science and Communications. New York: IEEE Press, 2020: 112-117. |
[4] | PUTTARUKSA C, TAEPRASARTSIT P. Color data augmentation through learning color-mapping parameters between cameras[C]// The 15th International Joint Conference on Computer Science and Software Engineering (JCSSE). New York: IEEE Press, 2018: 1-5. |
[5] | LI B Y, CUI Y, LIN T-Y, et al. Single image texture translation for data augmentation[EB/OL]. [2023-05-17]. https://arxiv.org/abs/2106.13804v1. |
[6] | ANTONIOU A, STORKEY A, EDWARDS H. Data augmentation generative adversarial networks[EB/OL]. [2023-05-17]. https://arxiv.org/abs/1711.04340v2. |
[7] | CHEN M H, ZHAO S, LIU H F, et al. Adversarial-learned loss for domain adaptation[EB/OL]. [2023-05-21]. http://arxiv.org/abs/2001.01046. |
[8] | JIANG X, LAO Q C, MATWIN S, et al. Implicit class- conditioned domain alignment for unsupervised domain adaptation[C]// The 37th International Conference on Machine Learning. New York: ACM, 2020: 4816-4827. |
[9] |
ZHANG X L, SONG H H, ZHANG K H, et al. Single image super-resolution with enhanced Laplacian pyramid network via conditional generative adversarial learning[J]. Neurocomputing, 2020, 398: 531-538.
DOI URL |
[10] |
KIM H J, LEE D. Image denoising with conditional generative adversarial networks (CGAN) in low dose chest images[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 954: 161914.
DOI URL |
[11] | JOSE A, FRANCIS A. Reversible colour density compression of images using cGANs[EB/OL]. [2023-04-21]. https://arxiv.org/abs/2106.10542.pdf. |
[12] | 黄凯奇, 赵鑫, 李乔哲, 等. 视觉图灵: 从人机对抗看计算机视觉下一步发展[J]. 图学学报, 2021, 42(3): 339-348. |
HUANG K Q, ZHAO X, LI Q Z, et al. Visual Turing: the next development of computer vision in the view of human- computer gaming[J]. Journal of Graphics, 2021, 42(3): 339-348 (in Chinese). | |
[13] | 林晓, 屈时操, 黄伟, 等. 显著区域保留的图像风格迁移算法[J]. 图学学报, 2021, 42(2): 190-197. |
LIN X, QU S C, HUANG W, et al. Style transfer algorithm for salient region preservation[J]. Journal of Graphics, 2021, 42(2): 190-197 (in Chinese). | |
[14] | 任好盼, 王文明, 危德健, 等. 基于高分辨率网络的人体姿态估计方法[J]. 图学学报, 2021, 42(3): 432-438. |
REN H P, WANG W M, WEI D J, et al. Human pose estimation based on high-resolution net[J]. Journal of Graphics, 2021, 42(3): 432-438 (in Chinese).
DOI |
|
[15] | 李彬, 王平, 赵思逸. 基于双重注意力机制的图像超分辨重建算法[J]. 图学学报, 2021, 42(2): 206-215. |
LI B, WANG P, ZHAO S Y. Image super-resolution reconstruction based on dual attention mechanism[J]. Journal of Graphics, 2021, 42(2): 206-215 (in Chinese).
DOI |
|
[16] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
DOI URL |
[17] | KANG M G, PARK J. ContraGAN: contrastive learning for conditional image generation[EB/OL]. [2023-04-21]. https://arxiv.org/abs/2006.12681v3. |
[18] | ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]// The 34th International Conference on Machine Learning - Volume 70. New York:ACM, 2017: 214-223. |
[19] |
KARRAS T, LAINE S, AILA T M. A style-based generator architecture for generative adversarial networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(12): 4217-4228.
DOI URL |
[20] | ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-attention generative adversarial networks[EB/OL]. [2023-04-21]. https://arxiv.org/abs/1805.08318.pdf. |
[21] | KARRAS T, LAINE S, AITTALA M, et al. Analyzing and improving the image quality of StyleGAN[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 8107-8116. |
[22] | KARRAS T, AILA T, LAINE S, et al. [EB/OL]. [2023-04-21]. https://arxiv.org/abs/1710.10196v2. |
[23] | 曹锦纲, 杨国田, 杨锡运. 基于注意力机制的深度学习路面裂缝检测[J]. 计算机辅助设计与图形学学报, 2020, 32(8): 1324-1333. |
CAO J G, YANG G T, YANG X Y. Pavement crack detection with deep learning based on attention mechanism[J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(8): 1324-1333 (in Chinese). | |
[24] | 王一鸣, 杜慧敏, 张霞, 等. 视觉注意力网络在工件表面缺陷检测中的应用[J]. 计算机辅助设计与图形学学报, 2019, 31(9): 1528-1534. |
WANG Y M, DU H M, ZHANG X, et al. Application of visual attention network in workpiece surface defect detection[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(9): 1528-1534 (in Chinese). | |
[25] | 刘德志, 梁正友, 孙宇. 结合空间注意力机制与光流特征的微表情识别方法[J]. 计算机辅助设计与图形学学报, 2021, 33(10): 1541-1552. |
LIU D Z, LIANG Z Y, SUN Y. Micro-expression recognition method based on spatial attention mechanism and optical flow features[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(10): 1541-1552 (in Chinese). | |
[26] | GRAY R. Vector quantization[J]. IEEE ASSP Magazine, 1984, 1(2): 4-29. |
[27] | GERSHO A, GRAY R. Vector quantization and signal compression[EB/OL]. [2023-04-21]. https://www.researchgate.net/publication/279368025_Vector_Quantization_and_Signal_Compression. |
[28] |
LINDE Y, BUZO A, GRAY R. An algorithm for vector quantizer design[J]. IEEE Transactions on Communications, 1980, 28(1): 84-95.
DOI URL |
[1] | LI Daxiang, JI Zhan, LIU Ying, TANG Yao. Improving YOLOv7 remote sensing image target detection algorithm [J]. Journal of Graphics, 2024, 45(4): 650-658. |
[2] | WEI Min, YAO Xin. Two-stage storm entity prediction based on multiscale and attention [J]. Journal of Graphics, 2024, 45(4): 696-704. |
[3] | ZENG Zhichao, XU Yue, WANG Jingyu, YE Yuanlong, HUANG Zhikai, WANG Huan. A water surface target detection algorithm based on SOE-YOLO lightweight network [J]. Journal of Graphics, 2024, 45(4): 736-744. |
[4] | WU Bing, TIAN Ying. Research on multi-scale road damage detection algorithm based on attention mechanism [J]. Journal of Graphics, 2024, 45(4): 770-778. |
[5] | ZHAO Lei, LI Dong, FANG Jiandong, CAO Qi. Improved YOLO object detection algorithm for traffic signs [J]. Journal of Graphics, 2024, 45(4): 779-790. |
[6] | LI Yuehua, ZHONG Xin, YAO Zhangyan, HU Bin. Detection of dress code violations based on improved YOLOv5s [J]. Journal of Graphics, 2024, 45(3): 433-445. |
[7] | ZHANG Xiangsheng, YANG Xiao. Defect detection method of rubber seal ring based on improved YOLOv7-tiny [J]. Journal of Graphics, 2024, 45(3): 446-453. |
[8] | LI Tao, HU Ting, WU Dandan. Monocular depth estimation combining pyramid structure and attention mechanism [J]. Journal of Graphics, 2024, 45(3): 454-463. |
[9] | LU Longfei, WANG Junfeng, ZHAO Shiwen, LI Guang, DING Xintao. Peg-in-hole compliant assembly method based on skill learning of force-position perception [J]. Journal of Graphics, 2024, 45(2): 250-258. |
[10] | GUO Zongyang, LIU Lidong, JIANG Donghua, LIU Zixiang, ZHU Shukang, CHEN Jinghua. Human action recognition algorithm based on semantics guided neural networks [J]. Journal of Graphics, 2024, 45(1): 26-34. |
[11] | ZHAI Yongjie, ZHAO Xiaoyu, WANG Luyao, WANG Yaru, SONG Xiaoke, ZHU Haoshuo. IDD-YOLOv7: a lightweight method for multiple defect detection of insulators in transmission lines [J]. Journal of Graphics, 2024, 45(1): 90-101. |
[12] | CUI Kebin, JIAO Jingyi. Steel surface defect detection algorithm based on MCB-FAH-YOLOv8 [J]. Journal of Graphics, 2024, 45(1): 112-125. |
[13] | WEI Chen-hao, YANG Rui, LIU Zhen-bing, LAN Ru-shi, SUN Xi-yan, LUO Xiao-nan. YOLOv8 with bi-level routing attention for road scene object detection [J]. Journal of Graphics, 2023, 44(6): 1104-1111. |
[14] | DING Jian-chuan, XIAO Jin-tong, ZHAO Ke-xin, JIA Dong-qing, CUI Bing-de, YANG Xin. Spiking neural network-based navigation and obstacle avoidance algorithm for complex scenes [J]. Journal of Graphics, 2023, 44(6): 1121-1129. |
[15] | ZHANG Li-yuan, ZHAO Hai-rong, HE Wei, TANG Xiong-feng. Knee cysts detection algorithm based on Mask R-CNN integrating global-local attention module [J]. Journal of Graphics, 2023, 44(6): 1183-1190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||