Journal of Graphics ›› 2024, Vol. 45 ›› Issue (3): 433-445.DOI: 10.11996/JG.j.2095-302X.2024030433
Previous Articles Next Articles
LI Yuehua(), ZHONG Xin, YAO Zhangyan, HU Bin(
)
Received:
2023-10-20
Accepted:
2024-01-30
Online:
2024-06-30
Published:
2024-06-06
Contact:
HU Bin (1985-), lecturer, Ph.D. His main research interest covers computer vision. E-mail:About author:
LI Yuehua (1977-),associate professor, master. His main research interests cover embedded systems, internet of things and intelligent control technology. E-mail:lyh@ntu.edu.cn
Supported by:
CLC Number:
LI Yuehua, ZHONG Xin, YAO Zhangyan, HU Bin. Detection of dress code violations based on improved YOLOv5s[J]. Journal of Graphics, 2024, 45(3): 433-445.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024030433
项目 | 版本环境 |
---|---|
Operating System | Windows 11 |
CPU | Intel i7-10870H |
GPU | NVIDIA RTX 2080 |
Python | 3.7.12 |
Pytorch | 1.9.0 |
CUDA | 12.0 |
cuDNN | 8.5.0 |
Table 1 The experimental environment configuration
项目 | 版本环境 |
---|---|
Operating System | Windows 11 |
CPU | Intel i7-10870H |
GPU | NVIDIA RTX 2080 |
Python | 3.7.12 |
Pytorch | 1.9.0 |
CUDA | 12.0 |
cuDNN | 8.5.0 |
类别 | 数量 |
---|---|
Hat | 4 361 |
No hat | 6 451 |
Mask | 5 711 |
No mask | 6 674 |
Cloth | 5 436 |
No cloth | 7 583 |
Table 2 Dataset gategories and annotation quantities
类别 | 数量 |
---|---|
Hat | 4 361 |
No hat | 6 451 |
Mask | 5 711 |
No mask | 6 674 |
Cloth | 5 436 |
No cloth | 7 583 |
Fig. 10 Part of the detection dataset ((a) Presence of not wearing masks and not wearing hats; (b) Presence of not wearing masks and not wearing clothes; (c) Presence of not wearing masks, not wearing clothes, and not wearing hats; (d) Presence of not wearing masks; (e) Absence of dress code violations)
检测目标 | 样式 |
---|---|
厨师服 | 厨师服(不区分长短袖):白色、蓝色 |
厨师帽 | 厨师帽(高)、厨工帽(低):白色 |
口罩 | 一次性无纺布口罩:蓝色、白色 |
Table 3 Style requirements for self-created clothing datasets
检测目标 | 样式 |
---|---|
厨师服 | 厨师服(不区分长短袖):白色、蓝色 |
厨师帽 | 厨师帽(高)、厨工帽(低):白色 |
口罩 | 一次性无纺布口罩:蓝色、白色 |
真实情况 | 预期结果 | |
---|---|---|
正例 | 反例 | |
正例 | TP (真正例) | FN (真反例) |
反例 | FP (假正例) | TN (假反例) |
Table 4 Confusion matrix of classification results
真实情况 | 预期结果 | |
---|---|---|
正例 | 反例 | |
正例 | TP (真正例) | FN (真反例) |
反例 | FP (假正例) | TN (假反例) |
Method | Precision | Recall | mAP | Parametars/M |
---|---|---|---|---|
YOLOv5s | 0.849 | 0.855 | 0.851 | 7.36 |
YOLOv5s+C3CBAM | 0.857 | 0.854 | 0.846 | 7.39 |
YOLOv5s+C3ECA | 0.851 | 0.853 | 0.845 | 7.45 |
YOLOv5s+C3CA | 0.865 | 0.857 | 0.857 | 7.41 |
YOLOv5s+C3EMA | 0.869 | 0.870 | 0.867 | 7.38 |
Table 5 Comparison with other attention mechanisms
Method | Precision | Recall | mAP | Parametars/M |
---|---|---|---|---|
YOLOv5s | 0.849 | 0.855 | 0.851 | 7.36 |
YOLOv5s+C3CBAM | 0.857 | 0.854 | 0.846 | 7.39 |
YOLOv5s+C3ECA | 0.851 | 0.853 | 0.845 | 7.45 |
YOLOv5s+C3CA | 0.865 | 0.857 | 0.857 | 7.41 |
YOLOv5s+C3EMA | 0.869 | 0.870 | 0.867 | 7.38 |
Method | Precision | Recall | mAP | Parameters/M | FPS |
---|---|---|---|---|---|
YOLOv5s | 0.849 | 0.855 | 0.851 | 7.36 | 65.3 |
YOLOv5s+C3EMA | 0.869 | 0.870 | 0.867 | 7.38 | 67.7 |
YOLOv5s+SCConv | 0.863 | 0.869 | 0.862 | 5.76 | 78.3 |
YOLOv5s+WIoU | 0.864 | 0.867 | 0.865 | 7.36 | 66.5 |
YOLOv5s+C3EMA+ SCConv | 0.881 | 0.885 | 0.875 | 6.55 | 68.6 |
YOLOv5s-ESW (Ours) | 0.893 | 0.897 | 0.892 | 6.52 | 70.1 |
Table 6 Ablation experiments of YOLOv5s-ESW on a custom clothing dataset
Method | Precision | Recall | mAP | Parameters/M | FPS |
---|---|---|---|---|---|
YOLOv5s | 0.849 | 0.855 | 0.851 | 7.36 | 65.3 |
YOLOv5s+C3EMA | 0.869 | 0.870 | 0.867 | 7.38 | 67.7 |
YOLOv5s+SCConv | 0.863 | 0.869 | 0.862 | 5.76 | 78.3 |
YOLOv5s+WIoU | 0.864 | 0.867 | 0.865 | 7.36 | 66.5 |
YOLOv5s+C3EMA+ SCConv | 0.881 | 0.885 | 0.875 | 6.55 | 68.6 |
YOLOv5s-ESW (Ours) | 0.893 | 0.897 | 0.892 | 6.52 | 70.1 |
Method | Precision | Recall | mAP | Parameters/M | FPS |
---|---|---|---|---|---|
YOLOv5s | 0.724 | 0.736 | 0.728 | 7.11 | 61.7 |
YOLOv5s+C3EMA | 0.740 | 0.745 | 0.741 | 7.19 | 58.3 |
YOLOv5s+SCConv | 0.731 | 0.738 | 0.733 | 5.53 | 69.7 |
YOLOv5s+WIoU | 0.738 | 0.743 | 0.740 | 7.15 | 60.2 |
YOLOv5s+C3EMA+ SCConv | 0.745 | 0.748 | 0.746 | 6.37 | 65.9 |
YOLOv5s-ESW (Ours) | 0.761 | 0.764 | 0.763 | 6.31 | 66.3 |
Table 7 Ablation experiments of YOLOv5s-ESW on the PASCAL VOC2012 dataset
Method | Precision | Recall | mAP | Parameters/M | FPS |
---|---|---|---|---|---|
YOLOv5s | 0.724 | 0.736 | 0.728 | 7.11 | 61.7 |
YOLOv5s+C3EMA | 0.740 | 0.745 | 0.741 | 7.19 | 58.3 |
YOLOv5s+SCConv | 0.731 | 0.738 | 0.733 | 5.53 | 69.7 |
YOLOv5s+WIoU | 0.738 | 0.743 | 0.740 | 7.15 | 60.2 |
YOLOv5s+C3EMA+ SCConv | 0.745 | 0.748 | 0.746 | 6.37 | 65.9 |
YOLOv5s-ESW (Ours) | 0.761 | 0.764 | 0.763 | 6.31 | 66.3 |
Model | AP0.5/% | Precision | Recall | mAP | Parameters/M | FPS | ||
---|---|---|---|---|---|---|---|---|
Hat | Mask | Cloth | ||||||
FasterR-CNN | 0.653 | 0.642 | 0.726 | 0.673 | 0.681 | 0.601 | 40.21 | 11.8 |
SSD | 0.702 | 0.714 | 0.709 | 0.708 | 0.721 | 0.713 | 26.15 | 52.7 |
YOLOv5s | 0.842 | 0.851 | 0.856 | 0.849 | 0.855 | 0.851 | 7.36 | 65.3 |
文献[29] | 0.824 | 0.859 | 0.871 | 0.851 | 0.856 | 0.847 | 3.52 | 90.6 |
文献[30] | 0.848 | 0.851 | 0.863 | 0.854 | 0.858 | 0.843 | 10.31 | 57.8 |
本文模型 | 0.891 | 0.887 | 0.897 | 0.893 | 0.897 | 0.892 | 6.52 | 70.1 |
Table 8 Comparison of different object detection algorithms on on a custom clothing dataset
Model | AP0.5/% | Precision | Recall | mAP | Parameters/M | FPS | ||
---|---|---|---|---|---|---|---|---|
Hat | Mask | Cloth | ||||||
FasterR-CNN | 0.653 | 0.642 | 0.726 | 0.673 | 0.681 | 0.601 | 40.21 | 11.8 |
SSD | 0.702 | 0.714 | 0.709 | 0.708 | 0.721 | 0.713 | 26.15 | 52.7 |
YOLOv5s | 0.842 | 0.851 | 0.856 | 0.849 | 0.855 | 0.851 | 7.36 | 65.3 |
文献[29] | 0.824 | 0.859 | 0.871 | 0.851 | 0.856 | 0.847 | 3.52 | 90.6 |
文献[30] | 0.848 | 0.851 | 0.863 | 0.854 | 0.858 | 0.843 | 10.31 | 57.8 |
本文模型 | 0.891 | 0.887 | 0.897 | 0.893 | 0.897 | 0.892 | 6.52 | 70.1 |
算法 | 输入尺寸 | 主干网络 | mAP | FPS |
---|---|---|---|---|
FasterR-CNN | - | VGG | 0.732 | 18.7 |
SSD | 300 | VGG | 0.768 | 19.0 |
Efficient-D0 | 512 | Efficient-B0 | 0.711 | 23.1 |
文献[32] | 416 | Darknet53-tiny | 0.671 | 70.0 |
YOLOv4-tiny | 416 | CSPDarknet53s | 0.663 | 108.0 |
YOLOv5s | 640 | CSPDarknet53 | 0.728 | 61.7 |
SD-YOLO | 600 | CSPDarknet53 | 0.692 | 78.0 |
YOLO-DAW | 640 | CSPDarknet53 | 0.686 | 58.9 |
YOLOv5s-ESW (Ours) | 640 | CSPDarknet53 | 0.763 | 66.3 |
Table 9 Comparative experiments of different object detection algorithms on the PASCAL VOC2012 dataset
算法 | 输入尺寸 | 主干网络 | mAP | FPS |
---|---|---|---|---|
FasterR-CNN | - | VGG | 0.732 | 18.7 |
SSD | 300 | VGG | 0.768 | 19.0 |
Efficient-D0 | 512 | Efficient-B0 | 0.711 | 23.1 |
文献[32] | 416 | Darknet53-tiny | 0.671 | 70.0 |
YOLOv4-tiny | 416 | CSPDarknet53s | 0.663 | 108.0 |
YOLOv5s | 640 | CSPDarknet53 | 0.728 | 61.7 |
SD-YOLO | 600 | CSPDarknet53 | 0.692 | 78.0 |
YOLO-DAW | 640 | CSPDarknet53 | 0.686 | 58.9 |
YOLOv5s-ESW (Ours) | 640 | CSPDarknet53 | 0.763 | 66.3 |
Fig. 12 Original YOLOv5s detection results ((a) Before missing problem improved 1; (b) Before confidence level improved; (c) Before missing problem improved 2; (d) Before missing problem improved 3)
Fig. 13 Detection results of the YOLOv5s-ESW algorithm proposed in this paper ((a) After missing problem improved 1; (b) After confidence level improved; (c) After missing problem improved 2; (d) After missing problem improved 3)
[1] | 章温慧. 餐饮行业地方政府智慧监管的优化研究: 以苍南县为例[D]. 上海: 上海师范大学, 2021. |
ZHANG W H. Optimization of local government’s intelligent supervision of catering industry[D]. Shanghai: Shanghai Normal University, 2021 (in Chinese). | |
[2] | 夏追平, 张志斌, 关堂敏. “阳光厨房” 项目对规范餐饮从业人员操作行为的影响[J]. 上海预防医学, 2021, 33(4): 340-344. |
XIA Z P, ZHANG Z B, GUAN T M. Influence of the “Sunshine Kitchen Project” on the standardized operation of catering industry[J]. Shanghai Journal of Preventive Medicine, 2021, 33(4): 340-344 (in Chinese). | |
[3] | 蔚宏奎. 提升食品安全监管, 护航盛夏“烟火气”[J]. 食品安全导刊, 2023(24): 9. |
WEI H K. Improve food safety supervision and escort “fireworks” in midsummer[J]. China Food Safety Magazine, 2023(24): 9 (in Chinese). | |
[4] | FAN H L. Theoretical basis and system establishment of China food safety intelligent supervision in the perspective of Internet of Things[J]. IEEE Access, 2019, 7: 71686-71695. |
[5] |
许德刚, 王露, 李凡. 深度学习的典型目标检测算法研究综述[J]. 计算机工程与应用, 2021, 57(8): 10-25.
DOI |
XU D G, WANG L, LI F. Review of typical object detection algorithms for deep learning[J]. Computer Engineering and Applications, 2021, 57(8): 10-25 (in Chinese).
DOI |
|
[6] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2014: 580-587. |
[7] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[8] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]// European Conference on Computer Vision. Cham: Springer, 2016: 21-37. |
[9] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788. |
[10] |
陈刚, 张培基, 龚冬冬, 等. 火电厂监控视频安全服检测方法研究[J]. 图学学报, 2023, 44(2): 291-297.
DOI |
CHEN G, ZHANG P J, GONG D D, et al. Research on safety clothing detection method for surveillance video of thermal power plant[J]. Journal of Graphics, 2023, 44(2): 291-297 (in Chinese).
DOI |
|
[11] | 刘欣宜, 张宝峰, 符烨, 等. 基于深度学习的污染场地作业人员着装规范性检测[J]. 中国安全生产科学技术, 2020, 16(7): 169-175. |
LIU X Y, ZHANG B F, FU Y, et al. Detection on normalization of operating personnel dressing at contaminated sites based on deep learning[J]. Journal of Safety Science and Technology, 2020, 16(7): 169-175 (in Chinese). | |
[12] | CHEN Z H, ZHANG F, LIU H B, et al. Real-time detection algorithm of helmet and reflective vest based on improved YOLOv5[J]. Journal of Real-Time Image Processing, 2023, 20(1): 4. |
[13] | 林其雄, 陈畅, 闫云凤, 等. 一种基于特征引导的电力施工场景工装合规穿戴二阶段检测算法[J]. 浙江电力, 2022, 41(4): 44-50. |
LIN Q X, CHEN C, YAN Y F, et al. A two-stage detection algorithm for workwear compliance in power construction scenarios based on feature guidance[J]. Zhejiang Electric Power, 2022, 41(4): 44-50 (in Chinese). | |
[14] | OUYANG D L, HE S, ZHANG G Z, et al. Efficient multi-scale attention module with cross-spatial learning[C]// ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing. New York: IEEE Press, 2023: 1-5. |
[15] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7132-7141. |
[16] | HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 13708-13717. |
[17] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// European Conference on Computer Vision. Cham: Springer, 2018: 3-19. |
[18] | DONGYOON H, YOUNGJOON Y, BEOMYOUNGE K, et al. Learning features with parameter-free layers[EB/OL]. [2023-05-08]. https://doi.org/10.48550/arXiv.2202.02777. |
[19] | HAN S, MAO H Z, DALLY WILLIAM J. Deep compression: compressing deep neural networks with pruning. traincd quantization and huffman coding[EB/OL]. [2023-04-04]. https://arxiv.org/abs/1510.00149. |
[20] | DENTON E, ZAREMBA W, BRUNA J, et al. Exploiting linear structure within convolutional networks for efficient evaluation[J]. Advances in Neural Information Processing Systems, 2014, 2(January): 1269-1277. |
[21] | HINTON G, VINYALS O, DEAN J, et al. Distilling the knowledge in a neural network[EB/OL]. [2023-03-04]. https://arxiv.org/abs/1503.02531. |
[22] | LI J F, WEN Y, HE L H. SCConv: spatial and channel reconstruction convolution for feature redundancy[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 6153-6162. |
[23] | WU Y, HE K. Group normalization[C]// European Conference on Computer Vision. Cham: Springer. 2018: 3-19. |
[24] | LI X, WANG W H, HU X L, et al. Selective kernel networks[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 510-519. |
[25] | ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157. |
[26] | TONG Z, CHEN Y, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic gocusing mechanism[EB/OL]. (2023-08-08) [2023-08-12]. https://arxiv.org/abs/2301.10051. |
[27] | SHETRY S. Application of convolutional neural network for image classification on Pascal VOC challenge 2012 dataset[EB/OL]. (2016-01-01) [2023-01-13]. https://arXiv.org/abs/:1607.03785. |
[28] | WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[EB/OL]. (2019-10-08) [2023-01-11]. https://arxiv.org/abs/1910.03151vl. |
[29] | 孙建诚, 杨舒涵, 龚芳媛, 等. 基于改进YOLOv5的复杂背景下路面裂缝检测[J]. 中国科技论文, 2023, 18(7): 779-785. |
SUN J C, YANG S H, GONG F Y, et al. Pavement crack detection in complex background based on improved YOLOv5[J]. China Sciencepaper, 2023, 18(7): 779-785 (in Chinese). | |
[30] |
祁泽政, 徐银霞. 改进YOLOv5s算法的安全帽佩戴检测研究[J]. 计算机工程与应用, 2023, 59(14): 176-183.
DOI |
QI Z Z, XU Y X. Research on helmet wearing detection of improved YOLOv5s algorithm[J]. Computer Engineering and Applications, 2023, 59(14): 176-183 (in Chinese).
DOI |
|
[31] | TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 10778-10787. |
[32] | 张秀花, 静茂凯, 袁永伟, 等. 基于改进YOLOv3-Tiny的番茄苗分级检测[J]. 农业工程学报, 2022, 38(1): 221-229. |
ZHANG X H, JING M K, YUAN Y W, et al. Tomato seedling classification detection using improved YOLOv3-Tiny[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(1): 221-229 (in Chinese). | |
[33] | BOCHKOVSKIY A, WANG C Y, LIAO H M. Yolov4: optimal speed and accuracy of object detection[EB/OL]. [2023-01-23]. https://doi.org/10.48550/arXiv.2004.10934. |
[34] | 孟彩霞, 王兆楠, 石磊, 等. 改进YOLOv5s的铁路异物入侵检测算法[J/OL]. 小型微型计算机系统, 1-10. [2023-08-28]. http://kns.cnki.net/kcms/detail/21.1106.TP.20230217.1616.007.html. |
WENG C X, WANG Z N, SHI L, et al. Improved railroad foreign object intrusion detection algorithm for YOLOv5s[J/OL]. Journal of Chinese Computer Systems. 1-10. [2023-08-28]. http://kns.cnki.net/kcms/detail/21.1106.TP.20230217.1616.007.html (in Chinese). | |
[35] | 殷智伟, 邵家玉, 张宁. YOLO-DAW: 基于窗口内部双重注意力机制的目标检测模型[J]. 东南大学学报: 自然科学版, 2023, 53(4): 718-724. |
YIN Z W, SHAO J Y, ZHANG N. YOLO-DAW: object detection model based on dual attention mechanism within windows[J]. Journal of Southeast University: Natural Science Edition, 2023, 53(4): 718-724 (in Chinese). |
[1] | LI Daxiang, JI Zhan, LIU Ying, TANG Yao. Improving YOLOv7 remote sensing image target detection algorithm [J]. Journal of Graphics, 2024, 45(4): 650-658. |
[2] | WEI Min, YAO Xin. Two-stage storm entity prediction based on multiscale and attention [J]. Journal of Graphics, 2024, 45(4): 696-704. |
[3] | NIU Weihua, GUO Xun. Rotating target detection algorithm in ship remote sensing images based on YOLOv8 [J]. Journal of Graphics, 2024, 45(4): 726-735. |
[4] | ZENG Zhichao, XU Yue, WANG Jingyu, YE Yuanlong, HUANG Zhikai, WANG Huan. A water surface target detection algorithm based on SOE-YOLO lightweight network [J]. Journal of Graphics, 2024, 45(4): 736-744. |
[5] | LI Songyang, WANG Xueting, CHEN Xianglong, CHEN Enqing. Human action recognition based on skeleton dynamic temporal filter [J]. Journal of Graphics, 2024, 45(4): 760-769. |
[6] | WU Bing, TIAN Ying. Research on multi-scale road damage detection algorithm based on attention mechanism [J]. Journal of Graphics, 2024, 45(4): 770-778. |
[7] | ZHAO Lei, LI Dong, FANG Jiandong, CAO Qi. Improved YOLO object detection algorithm for traffic signs [J]. Journal of Graphics, 2024, 45(4): 779-790. |
[8] | LIANG Chengwu, YANG Jie, HU Wei, JIANG Songqi, QIAN Qiyang, HOU Ning. Temporal dynamic frame selection and spatio-temporal graph convolution for interpretable skeleton-based action recognition [J]. Journal of Graphics, 2024, 45(4): 791-803. |
[9] | ZHANG Xiangsheng, YANG Xiao. Defect detection method of rubber seal ring based on improved YOLOv7-tiny [J]. Journal of Graphics, 2024, 45(3): 446-453. |
[10] | LI Tao, HU Ting, WU Dandan. Monocular depth estimation combining pyramid structure and attention mechanism [J]. Journal of Graphics, 2024, 45(3): 454-463. |
[11] | AI Liefu, TAO Yong, JIANG Changyu. Orthogonal fusion image descriptor based on global attention [J]. Journal of Graphics, 2024, 45(3): 472-481. |
[12] | HUANG Youwen, LIN Zhiqin, ZHANG Jin, CHEN Junkuan. Lightweight human pose estimation algorithm combined with coordinate Transformer [J]. Journal of Graphics, 2024, 45(3): 516-527. |
[13] | LU Longfei, WANG Junfeng, ZHAO Shiwen, LI Guang, DING Xintao. Peg-in-hole compliant assembly method based on skill learning of force-position perception [J]. Journal of Graphics, 2024, 45(2): 250-258. |
[14] | GUO Zongyang, LIU Lidong, JIANG Donghua, LIU Zixiang, ZHU Shukang, CHEN Jinghua. Human action recognition algorithm based on semantics guided neural networks [J]. Journal of Graphics, 2024, 45(1): 26-34. |
[15] | LV Ling, LI Hua, WANG Wu. Multi-directional text detection based on the fusion of enhanced feature extraction network and semantic feature [J]. Journal of Graphics, 2024, 45(1): 56-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||