Journal of Graphics ›› 2024, Vol. 45 ›› Issue (3): 446-453.DOI: 10.11996/JG.j.2095-302X.2024030446
Previous Articles Next Articles
Received:
2023-10-08
Accepted:
2024-02-20
Online:
2024-06-30
Published:
2024-06-06
About author:
ZHANG Xiangsheng (1977-), associate professor, Ph.D. His main research interests cover computer vision and image processing, intelligent control of robots, etc. E-mail:zxs_vip@163.com
CLC Number:
ZHANG Xiangsheng, YANG Xiao. Defect detection method of rubber seal ring based on improved YOLOv7-tiny[J]. Journal of Graphics, 2024, 45(3): 446-453.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024030446
缺陷类型 | 标签 | 数量/张 |
---|---|---|
划痕 | Nick | 3 620 |
断裂 | Crack | 3 490 |
缺料 | Damage | 4 250 |
表面粗糙 | Coarse | 3 080 |
Table 1 Rubber seal defect data set
缺陷类型 | 标签 | 数量/张 |
---|---|---|
划痕 | Nick | 3 620 |
断裂 | Crack | 3 490 |
缺料 | Damage | 4 250 |
表面粗糙 | Coarse | 3 080 |
组别 | Model | P/% | R/% | F1-score | mAP@0.5/% | Params/M | Time/ms |
---|---|---|---|---|---|---|---|
1组 | YOLOv7-tiny | 77.6 | 82.8 | 80.1 | 83.1 | 6.02 | 16.7 |
2组 | YOLOv7-tiny+A | 78.8 | 83.8 | 81.2 | 84.5 | 4.74 | 15.5 |
3组 | YOLOv7-tiny+A+B | 84.3 | 85.4 | 84.8 | 88.8 | 6.38 | 17.1 |
4组 | YOLOv7-tiny+A+B+C | 86.4 | 90.1 | 88.2 | 89.5 | 6.38 | 17.3 |
5组 | YOLOv7-tiny+A+B+C+D | 93.1 | 88.3 | 90.6 | 90.9 | 6.79 | 18.5 |
Table 2 Comparison of ablation experiment results
组别 | Model | P/% | R/% | F1-score | mAP@0.5/% | Params/M | Time/ms |
---|---|---|---|---|---|---|---|
1组 | YOLOv7-tiny | 77.6 | 82.8 | 80.1 | 83.1 | 6.02 | 16.7 |
2组 | YOLOv7-tiny+A | 78.8 | 83.8 | 81.2 | 84.5 | 4.74 | 15.5 |
3组 | YOLOv7-tiny+A+B | 84.3 | 85.4 | 84.8 | 88.8 | 6.38 | 17.1 |
4组 | YOLOv7-tiny+A+B+C | 86.4 | 90.1 | 88.2 | 89.5 | 6.38 | 17.3 |
5组 | YOLOv7-tiny+A+B+C+D | 93.1 | 88.3 | 90.6 | 90.9 | 6.79 | 18.5 |
Model | mAP@0.5/% | Params/M | Time/ms |
---|---|---|---|
SSD | 67.1 | 24.48 | 49.9 |
Faster RCNN | 81.5 | 72.02 | 38.1 |
YOLOv5s | 72.2 | 7.20 | 29.9 |
文献[11] | 82.2 | 23.90 | 23.3 |
YOLOX-tiny | 79.2 | 5.19 | 18.5 |
YOLOv6s | 78.8 | 17.20 | 25.0 |
YOLOv7 | 88.9 | 37.20 | 40.4 |
文献[19] | 89.1 | 42.80 | 40.5 |
YOLOv7-tiny | 82.9 | 6.02 | 16.7 |
YOLOv8s | 84.8 | 11.10 | 16.2 |
本文算法 | 90.9 | 6.79 | 18.5 |
Table 3 Comparison of results of contrasting experiments
Model | mAP@0.5/% | Params/M | Time/ms |
---|---|---|---|
SSD | 67.1 | 24.48 | 49.9 |
Faster RCNN | 81.5 | 72.02 | 38.1 |
YOLOv5s | 72.2 | 7.20 | 29.9 |
文献[11] | 82.2 | 23.90 | 23.3 |
YOLOX-tiny | 79.2 | 5.19 | 18.5 |
YOLOv6s | 78.8 | 17.20 | 25.0 |
YOLOv7 | 88.9 | 37.20 | 40.4 |
文献[19] | 89.1 | 42.80 | 40.5 |
YOLOv7-tiny | 82.9 | 6.02 | 16.7 |
YOLOv8s | 84.8 | 11.10 | 16.2 |
本文算法 | 90.9 | 6.79 | 18.5 |
[1] | PENG G L, ZHANG Z J, LI W Q. Computer vision algorithm for measurement and inspection of O-rings[J]. Measurement, 2016, 94: 828-836. |
[2] | DIESING G. How AI and machine vision intersect[J]. Quality, 2022, 61(2): 14. |
[3] | YU Y W, YIN G F, DU L Q. Image classification for steel strip surface defects based on support vector machines[J]. Advanced Materials Research, 2011, 217-218: 336-340. |
[4] |
黄连, 刘晓军, 雷自力, 等. 基于奇异值分解的橡胶密封圈表面缺陷检测方法[J]. 润滑与密封, 2021, 46(11): 84-88.
DOI |
HUANG L, LIU X J, LEI Z L, et al. Surface defect detection method of rubber sealing ring based on singular value decomposition[J]. Lubrication Engineering, 2021, 46(11): 84-88 (in Chinese).
DOI |
|
[5] | 陶显, 侯伟, 徐德. 基于深度学习的表面缺陷检测方法综述[J]. 自动化学报, 2021, 47(5): 1017-1034. |
TAO X, HOU W, XU D. A survey of surface defect detection methods based on deep learning[J]. Acta Automatica Sinica, 2021, 47(5): 1017-1034 (in Chinese). | |
[6] | 陶晓天, 何博侠, 张鹏辉, 等. 基于深度学习的航天密封圈表面缺陷检测[J]. 仪器仪表学报, 2021, 42(1): 199-206. |
TAO X T, HE B X, ZHANG P H, et al. Surface defect detection of aerospace sealing rings based on deep learning[J]. Chinese Journal of Scientific Instrument, 2021, 42(1): 199-206 (in Chinese). | |
[7] |
李洪安, 郑峭雪, 陶若霖, 等. 基于深度学习的图像超分辨率研究综述[J]. 图学学报, 2023, 44(1): 1-15.
DOI |
LI H A, ZHENG Q X, TAO R L, et al. Review of image super-resolutionbased on deep learning[J]. Journal of Graphics, 2023, 44(1): 1-15 (in Chinese). | |
[8] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788. |
[9] | REDMON J, FARHADI A. Yolov3: an incremental improvement[EB/OL]. [2023-05-17]. http://arxivorg.abs.180402767. |
[10] | KUZNETSOVA A, MALEVA T, SOLOVIEV V. Detecting apples in orchards using YOLOv3 and YOLOv5 in general and close-up images[C]// International Symposium on Neural Networks. Cham: Springer, 2020: 233-243. |
[11] | 朱文博, 夏林聪, 陈龙, 等. 基于改进YOLOv5的O型密封圈缺陷检测方法[J]. 上海理工大学学报, 2022, 44(5): 440-448. |
ZHU W B, XIA L C, CHEN L, et al. Defect detection method of O-ring based on improved YOLOv5[J]. Journal of University of Shanghai for Science and Technology, 2022, 44(5): 440-448 (in Chinese). | |
[12] |
胡欣, 周运强, 肖剑, 等. 基于改进YOLOv5的螺纹钢表面缺陷检测[J]. 图学学报, 2023, 44(3): 427-437.
DOI |
HU X, ZHOU Y Q, XIAO J, et al. Surface defect detection of threaded steel based on improved YOLOv5[J]. Journal of Graphics, 2023, 44(3): 427-437 (in Chinese).
DOI |
|
[13] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 7464-7475. |
[14] | CHEN J R, KAO S H, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 12021-12031. |
[15] | LIU Y, SHAO Z, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions[EB/OL]. [2023-05-07]. http://arxivorg.abs.211205561. |
[16] | TONG Z, CHEN Y U, XU Z. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[EB/OL]. [2023-05-07]. http://arxivorg.abs.230110051. |
[17] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]// European Conference on Computer Vision. Cham: Springer, 2016: 21-37. |
[18] | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// IEEE Transactions on Pattern Analysis and Machine Intelligence. New York: IEEE Press, 2017: 1137-1149. |
[19] |
戚玲珑, 高建瓴. 基于改进YOLOv7的小目标检测[J]. 计算机工程, 2023, 49(1): 41-48.
DOI |
QI L L, GAO J L. Small object detection based on improved YOLOv7[J]. Computer Engineering, 2023, 49(1): 41-48 (in Chinese).
DOI |
[1] | LI Daxiang, JI Zhan, LIU Ying, TANG Yao. Improving YOLOv7 remote sensing image target detection algorithm [J]. Journal of Graphics, 2024, 45(4): 650-658. |
[2] | WEI Min, YAO Xin. Two-stage storm entity prediction based on multiscale and attention [J]. Journal of Graphics, 2024, 45(4): 696-704. |
[3] | ZENG Zhichao, XU Yue, WANG Jingyu, YE Yuanlong, HUANG Zhikai, WANG Huan. A water surface target detection algorithm based on SOE-YOLO lightweight network [J]. Journal of Graphics, 2024, 45(4): 736-744. |
[4] | WU Bing, TIAN Ying. Research on multi-scale road damage detection algorithm based on attention mechanism [J]. Journal of Graphics, 2024, 45(4): 770-778. |
[5] | ZHAO Lei, LI Dong, FANG Jiandong, CAO Qi. Improved YOLO object detection algorithm for traffic signs [J]. Journal of Graphics, 2024, 45(4): 779-790. |
[6] | LI Yuehua, ZHONG Xin, YAO Zhangyan, HU Bin. Detection of dress code violations based on improved YOLOv5s [J]. Journal of Graphics, 2024, 45(3): 433-445. |
[7] | LI Tao, HU Ting, WU Dandan. Monocular depth estimation combining pyramid structure and attention mechanism [J]. Journal of Graphics, 2024, 45(3): 454-463. |
[8] | LU Longfei, WANG Junfeng, ZHAO Shiwen, LI Guang, DING Xintao. Peg-in-hole compliant assembly method based on skill learning of force-position perception [J]. Journal of Graphics, 2024, 45(2): 250-258. |
[9] | GUO Zongyang, LIU Lidong, JIANG Donghua, LIU Zixiang, ZHU Shukang, CHEN Jinghua. Human action recognition algorithm based on semantics guided neural networks [J]. Journal of Graphics, 2024, 45(1): 26-34. |
[10] | ZHAI Yongjie, ZHAO Xiaoyu, WANG Luyao, WANG Yaru, SONG Xiaoke, ZHU Haoshuo. IDD-YOLOv7: a lightweight method for multiple defect detection of insulators in transmission lines [J]. Journal of Graphics, 2024, 45(1): 90-101. |
[11] | GU Tianjun, XIONG Suya, LIN Xiao. Diversified generation of theatrical masks based on SASGAN [J]. Journal of Graphics, 2024, 45(1): 102-111. |
[12] | CUI Kebin, JIAO Jingyi. Steel surface defect detection algorithm based on MCB-FAH-YOLOv8 [J]. Journal of Graphics, 2024, 45(1): 112-125. |
[13] | WEI Chen-hao, YANG Rui, LIU Zhen-bing, LAN Ru-shi, SUN Xi-yan, LUO Xiao-nan. YOLOv8 with bi-level routing attention for road scene object detection [J]. Journal of Graphics, 2023, 44(6): 1104-1111. |
[14] | DING Jian-chuan, XIAO Jin-tong, ZHAO Ke-xin, JIA Dong-qing, CUI Bing-de, YANG Xin. Spiking neural network-based navigation and obstacle avoidance algorithm for complex scenes [J]. Journal of Graphics, 2023, 44(6): 1121-1129. |
[15] | ZHANG Li-yuan, ZHAO Hai-rong, HE Wei, TANG Xiong-feng. Knee cysts detection algorithm based on Mask R-CNN integrating global-local attention module [J]. Journal of Graphics, 2023, 44(6): 1183-1190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||