Journal of Graphics ›› 2025, Vol. 46 ›› Issue (2): 241-248.DOI: 10.11996/JG.j.2095-302X.2025020241
• Image Processing and Computer Vision • Previous Articles Next Articles
WANG Zhidong1(), CHEN Chenyang2, LIU Xiaoming2
Received:
2024-08-13
Accepted:
2024-09-04
Online:
2025-04-30
Published:
2025-04-24
About author:
First author contact:WANG Zhidong (1978-), senior engineer, master. His main research interests cover graphic image processing, power system automation, etc. E-mail:wangzhidong@js.sgcc.com.cn
CLC Number:
WANG Zhidong, CHEN Chenyang, LIU Xiaoming. Defect detection method of communication optical cable based on adaptive feature extraction[J]. Journal of Graphics, 2025, 46(2): 241-248.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025020241
模型 | P/% | R/% | mAP50/% | mAP50∶95/% | Params/M | GFLOPs |
---|---|---|---|---|---|---|
YOLOv8n | 84.6 | 80.2 | 85.7 | 49.7 | 3.01 | 8.2 |
YOLOv8s+A | 87.3 | 82.3 | 86.9 | 50.6 | 2.61 | 7.7 |
YOLOv8s+A+B | 88.4 | 81.3 | 87.4 | 50.8 | 2.75 | 7.8 |
YOLOv8s+A+B+C | 88.8 | 82.6 | 88.2 | 51.9 | 3.17 | 8.4 |
Table 1 Ablation of experiment results
模型 | P/% | R/% | mAP50/% | mAP50∶95/% | Params/M | GFLOPs |
---|---|---|---|---|---|---|
YOLOv8n | 84.6 | 80.2 | 85.7 | 49.7 | 3.01 | 8.2 |
YOLOv8s+A | 87.3 | 82.3 | 86.9 | 50.6 | 2.61 | 7.7 |
YOLOv8s+A+B | 88.4 | 81.3 | 87.4 | 50.8 | 2.75 | 7.8 |
YOLOv8s+A+B+C | 88.8 | 82.6 | 88.2 | 51.9 | 3.17 | 8.4 |
模型 | mAP50/% | mAP50∶95/% | Params/M | GFLOPs | Time/ms | mAP50/% | ||||
---|---|---|---|---|---|---|---|---|---|---|
断缆 | 击穿 | 坑蚀 | 电痕 | 局部坑蚀 | ||||||
SSD | 77.1 | 33.3 | 24.28 | 30.63 | 31.40 | 89.8 | 75.2 | 69.3 | 73.4 | 77.9 |
Faster R-CNN | 81.6 | 37.6 | 60.36 | 247.81 | 38.50 | 92.1 | 69.8 | 75.4 | 84.3 | 86.3 |
YOLOv3-tiny | 84.3 | 45.9 | 12.13 | 19.00 | 1.86 | 92.6 | 88.6 | 77.4 | 79.6 | 83.3 |
YOLOv5n | 85.1 | 48.3 | 2.51 | 7.20 | 4.66 | 92.2 | 92.5 | 74.8 | 79.2 | 86.7 |
YOLOv6n | 85.1 | 49.5 | 4.24 | 11.90 | 3.84 | 89.4 | 88.5 | 81.7 | 79.6 | 86.0 |
YOLOv7-tiny | 85.2 | 45.7 | 6.03 | 13.20 | 4.46 | 94.3 | 91.2 | 77.8 | 79.7 | 83.2 |
RT-DETR-R18 | 87.7 | 51.6 | 20.08 | 58.30 | 22.39 | 93.1 | 91.8 | 81.2 | 84.6 | 87.6 |
YOLOv10n | 83.0 | 47.0 | 2.30 | 6.70 | 3.62 | 94.3 | 87.6 | 74.4 | 77.3 | 81.2 |
YOLOv8n | 85.7 | 49.7 | 3.01 | 8.20 | 4.31 | 92.9 | 91.4 | 76.6 | 81.0 | 86.5 |
Ours | 88.2 | 51.9 | 3.17 | 8.40 | 5.09 | 96.3 | 92.4 | 83.3 | 83.1 | 86.2 |
Table 2 Comparison of experiment results
模型 | mAP50/% | mAP50∶95/% | Params/M | GFLOPs | Time/ms | mAP50/% | ||||
---|---|---|---|---|---|---|---|---|---|---|
断缆 | 击穿 | 坑蚀 | 电痕 | 局部坑蚀 | ||||||
SSD | 77.1 | 33.3 | 24.28 | 30.63 | 31.40 | 89.8 | 75.2 | 69.3 | 73.4 | 77.9 |
Faster R-CNN | 81.6 | 37.6 | 60.36 | 247.81 | 38.50 | 92.1 | 69.8 | 75.4 | 84.3 | 86.3 |
YOLOv3-tiny | 84.3 | 45.9 | 12.13 | 19.00 | 1.86 | 92.6 | 88.6 | 77.4 | 79.6 | 83.3 |
YOLOv5n | 85.1 | 48.3 | 2.51 | 7.20 | 4.66 | 92.2 | 92.5 | 74.8 | 79.2 | 86.7 |
YOLOv6n | 85.1 | 49.5 | 4.24 | 11.90 | 3.84 | 89.4 | 88.5 | 81.7 | 79.6 | 86.0 |
YOLOv7-tiny | 85.2 | 45.7 | 6.03 | 13.20 | 4.46 | 94.3 | 91.2 | 77.8 | 79.7 | 83.2 |
RT-DETR-R18 | 87.7 | 51.6 | 20.08 | 58.30 | 22.39 | 93.1 | 91.8 | 81.2 | 84.6 | 87.6 |
YOLOv10n | 83.0 | 47.0 | 2.30 | 6.70 | 3.62 | 94.3 | 87.6 | 74.4 | 77.3 | 81.2 |
YOLOv8n | 85.7 | 49.7 | 3.01 | 8.20 | 4.31 | 92.9 | 91.4 | 76.6 | 81.0 | 86.5 |
Ours | 88.2 | 51.9 | 3.17 | 8.40 | 5.09 | 96.3 | 92.4 | 83.3 | 83.1 | 86.2 |
[1] | 陈少磊, 罗洋, 邓平, 等. ADSS光缆电腐蚀机理研究及防范措施应用[J]. 电力信息与通信技术, 2019, 17(9): 67-73. |
CHEN S L, LUO Y, DENG P, et al. Research on electro-corrosion mechanism of ADSs optical cable and application of preventive measures[J]. Electric Power Information and Communication Technology, 2019, 17(9): 67-73 (in Chinese). | |
[2] | 王富. ADSS光缆电腐蚀故障的在线监测措施[J]. 电子世界, 2018(14): 171, 173. |
WANG F. Online monitoring measures for galvanic corrosion faults in ADSS fiber optic cables[J]. Electronics World, 2018(14): 171, 173 (in Chinese). | |
[3] | 刘传洋, 吴一全. 基于深度学习的输电线路视觉检测方法研究进展[J]. 中国电机工程学报, 2023, 43(19): 7423-7445. |
LIU C Y, WU Y Q. Research progress of vision detection methods based on deep learning for transmission lines[J]. Proceedings of the CSEE, 2023, 43(19): 7423-7445 (in Chinese). | |
[4] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2014: 580-587. |
[5] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]// The 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37. |
[6] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788. |
[7] | 裴少通, 张行远, 胡晨龙, 等. 基于ER-YOLO算法的跨环境输电线路缺陷识别方法[J]. 电工技术学报, 2024, 39(9): 2825-2840. |
PEI S T, ZHANG H X, HU C L, et al. The defect detection method for cross-environment power transmission line based on ER-YOLO algorithm[J]. Transactions of China Electrotechnical Society, 2024, 39(9): 2825-2840 (in Chinese). | |
[8] |
王道累, 康博, 朱瑞. 基于深度学习的电力设备铭牌文本检测方法[J]. 图学学报, 2023, 44(4): 691-698.
DOI |
WANG D L, KANG B, ZHU R. Text detection method for electrical equipment nameplates based on deep learning[J]. Journal of Graphics, 2023, 44(4): 691-698 (in Chinese). | |
[9] | WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2020: 1571-1580. |
[10] | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 8759-8768. |
[11] | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 936-944. |
[12] | WANG C Y, YEH I H, LIAO H Y M. YOLOv9:learning what you want to learn using programmable gradient information[EB/OL]. [2024-06-13]. https://arxiv.org/abs/2402.13616. |
[13] | CAI X H, LAI Q X, WANG Y W, et al. Poly kernel inception network for remote sensing detection[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2024: 27706-27716. |
[14] | QI Y L, HE Y T, QI X M, et al. Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation[C]// 2023 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2023: 6047-6056. |
[15] | ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2024: 16965-16974. |
[16] |
曹义亲, 伍铭林, 徐露. 基于改进YOLOv5算法的钢材表面缺陷检测[J]. 图学学报, 2023, 44(2): 335-345.
DOI |
CAO Y Q, WU M L, XU L. Steel surface defect detection based on improved YOLOv5 algorithm[J]. Journal of Graphics, 2023, 44(2): 335-345 (in Chinese). | |
[17] | WANG A, CHEN H, LIU L H, et al. YOLOv10:Real-time end-to-end object detection[EB/OL]. [2024-06-13]. https://arxiv.org/abs/2405.14458. |
[1] | ZHANG Lili, YANG Kang, ZHANG Ke, WEI Wei, LI Jing, TAN Hongxin, ZHANG Xiangyu. Research on improved YOLOv8 detection algorithm for diesel vehicle emission of black smoke [J]. Journal of Graphics, 2025, 46(2): 249-258. |
[2] | ZHAO Zhenbing, HAN Yu, TANG Chenkang. Cascade detection method for insulator defects in distribution lines based on improved YOLOv8 [J]. Journal of Graphics, 2025, 46(1): 1-12. |
[3] | WANG Zhidong, CHEN Chenyang, LIU Xiaoming. The defect detection method for communication optical cables based on lightweight improved YOLOv8 [J]. Journal of Graphics, 2025, 46(1): 28-34. |
[4] | SHI Hao, WANG Shu, HAN Jianhong, LUO Zhaoyi, WANG Yupei. Adversarial example generation method for open-vocabulary detection large models based on visually-textual fusion loss [J]. Journal of Graphics, 2024, 45(6): 1222-1230. |
[5] | LI Zhenfeng, FU Shichen, XU Le, MENG Bo, ZHANG Xin, QING Jianjun. Research on gangue target detection algorithm based on MBI-YOLOv8 [J]. Journal of Graphics, 2024, 45(6): 1301-1312. |
[6] | LI Shengtao, HOU Liqun, DONG Yasong. Automatic reading of pointer meters based on R-YOLOv7 and MIMO-CTFNet [J]. Journal of Graphics, 2024, 45(6): 1313-1327. |
[7] | YAN Jianhong, RAN Tongxiao. Lightweight UAV image target detection algorithm based on YOLOv8 [J]. Journal of Graphics, 2024, 45(6): 1328-1337. |
[8] | HU Fengkuo, YE Lan, TAN Xianfeng, ZHANG Qinzhan, HU Zhixin, FANG Qing, WANG Lei, MAN Xiaofeng. A refined YOLOv8-based algorithm for lightweight pavement disease detection [J]. Journal of Graphics, 2024, 45(5): 892-900. |
[9] | WANG Yaru, FENG Lilong, SONG Xiaoke, QU Zhuo, YANG Ke, WANG Qianming, ZHAI Yongjie. TFD-YOLOv8: a transmission line foreign object detection method [J]. Journal of Graphics, 2024, 45(5): 901-912. |
[10] | LIU Yiyan, HAO Tingnan, HE Chen, CHANG Yingjie. Photovoltaic cell surface defect detection based on DBBR-YOLO [J]. Journal of Graphics, 2024, 45(5): 913-921. |
[11] | JIANG Xiaoheng, DUAN Jinzhong, LU Yang, CUI Lisha, XU Mingliang. Fusing prior knowledge reasoning for surface defect detection [J]. Journal of Graphics, 2024, 45(5): 957-967. |
[12] | LI Gang, CAI Zehao, SUN Huaxun, ZHAO Zhenbing. Research on defect detection of transmission line fittings based on improved YOLOv8 and semantic knowledge fusion [J]. Journal of Graphics, 2024, 45(5): 979-986. |
[13] | XIE Guobo, LIN Songze, LIN Zhiyi, WU Chenfeng, LIANG Lihui. Road defect detection algorithm based on improved YOLOv7-tiny [J]. Journal of Graphics, 2024, 45(5): 987-997. |
[14] | LI Jianhua, HAN Yu, SHI Kaiming, ZHANG Kejia, GUO Hongling, FANG Dongping, CAO Jiaming. Small-target worker detection on construction sites [J]. Journal of Graphics, 2024, 45(5): 1040-1049. |
[15] | LI Daxiang, JI Zhan, LIU Ying, TANG Yao. Improving YOLOv7 remote sensing image target detection algorithm [J]. Journal of Graphics, 2024, 45(4): 650-658. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||