Journal of Graphics ›› 2024, Vol. 45 ›› Issue (5): 1040-1049.DOI: 10.11996/JG.j.2095-302X.2024051040
• BIM/CIM • Previous Articles Next Articles
LI Jianhua1,2(), HAN Yu1, SHI Kaiming2, ZHANG Kejia2, GUO Hongling1(
), FANG Dongping1, CAO Jiaming2
Received:
2024-06-18
Revised:
2024-08-05
Online:
2024-10-31
Published:
2024-10-31
Contact:
GUO Hongling
About author:
First author contact:LI Jianhua (1970-), senior engineer, PhD candidate. His main research interest covers construction management. E-mail:228996838@qq.com
Supported by:
CLC Number:
LI Jianhua, HAN Yu, SHI Kaiming, ZHANG Kejia, GUO Hongling, FANG Dongping, CAO Jiaming. Small-target worker detection on construction sites[J]. Journal of Graphics, 2024, 45(5): 1040-1049.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024051040
模型 | P | R | mAP50 | mAP50:95 |
---|---|---|---|---|
YOLOv5m | 76.7 | 64.8 | 72.1 | 35.1 |
YOLOv8m | 70.1 | 58.1 | 63.4 | 30.5 |
Table 1 Effect comparison of YOLOv5 and v8/%
模型 | P | R | mAP50 | mAP50:95 |
---|---|---|---|---|
YOLOv5m | 76.7 | 64.8 | 72.1 | 35.1 |
YOLOv8m | 70.1 | 58.1 | 63.4 | 30.5 |
检测头 | 20×20 | 40×40 | 80×80 | 160×160 |
---|---|---|---|---|
小 | (116,90) | (30,61) | (10,13) | (4,5) |
中 | (156,198) | (62.45) | (16,30) | (8,10) |
大 | (373,326) | (59,119) | (33,23) | (22,18) |
Table 2 The size of the clustered anchor frame/Pixel
检测头 | 20×20 | 40×40 | 80×80 | 160×160 |
---|---|---|---|---|
小 | (116,90) | (30,61) | (10,13) | (4,5) |
中 | (156,198) | (62.45) | (16,30) | (8,10) |
大 | (373,326) | (59,119) | (33,23) | (22,18) |
Fig. 10 Frame difference method effect display ((a) The original image; (b) The pixel-difference map using two-frame differences; (c) The motion region map after binarization and morphological processing; (d) Box marked motion area map)
模型 | P/% | R/% | mAP50/ % | mAP50:95/ % | FPS/ 帧每秒 |
---|---|---|---|---|---|
YOLO-v5m | 76.7 | 64.8 | 72.1 | 35.1 | 54.0 |
SAHI-1280 | 78.5 | 68.4 | 74.3 | 35.9 | 19.0 |
SAHI-640 | 81.2 | 71.6 | 75.2 | 36.7 | 8.0 |
SAHI-320 | 83.9 | 73.9 | 78.1 | 37.4 | 3.1 |
Table 3 Performance of SAHI
模型 | P/% | R/% | mAP50/ % | mAP50:95/ % | FPS/ 帧每秒 |
---|---|---|---|---|---|
YOLO-v5m | 76.7 | 64.8 | 72.1 | 35.1 | 54.0 |
SAHI-1280 | 78.5 | 68.4 | 74.3 | 35.9 | 19.0 |
SAHI-640 | 81.2 | 71.6 | 75.2 | 36.7 | 8.0 |
SAHI-320 | 83.9 | 73.9 | 78.1 | 37.4 | 3.1 |
模型 | F1/% | P/% | R/% | mAP50/% | mAP50:95/% | FPS/帧每秒 |
---|---|---|---|---|---|---|
YOLOv5m | 70.2 | 76.7 | 64.8 | 72.1 | 35.1 | 54 |
小目标检测头 | 76.4 | 76.8 | 76.0 | 77.6 | 36.2 | 27 |
YOLOv5m-SE | 75.7 | 78.8 | 72.8 | 78.7 | 33.7 | 43 |
YOLOv5m-CBAM | 74.0 | 71.4 | 76.9 | 77.1 | 32.8 | 44 |
YOLOv5m-ECA | 76.8 | 77.9 | 75.7 | 78.0 | 33.3 | 40 |
YOLOv5m-CA | 75.6 | 79.5 | 72.0 | 77.7 | 33.0 | 41 |
YOLOv5m-GAM | 75.9 | 75.7 | 76.1 | 79.1 | 38.4 | 25 |
Table 4 Comparison of model optimization effect
模型 | F1/% | P/% | R/% | mAP50/% | mAP50:95/% | FPS/帧每秒 |
---|---|---|---|---|---|---|
YOLOv5m | 70.2 | 76.7 | 64.8 | 72.1 | 35.1 | 54 |
小目标检测头 | 76.4 | 76.8 | 76.0 | 77.6 | 36.2 | 27 |
YOLOv5m-SE | 75.7 | 78.8 | 72.8 | 78.7 | 33.7 | 43 |
YOLOv5m-CBAM | 74.0 | 71.4 | 76.9 | 77.1 | 32.8 | 44 |
YOLOv5m-ECA | 76.8 | 77.9 | 75.7 | 78.0 | 33.3 | 40 |
YOLOv5m-CA | 75.6 | 79.5 | 72.0 | 77.7 | 33.0 | 41 |
YOLOv5m-GAM | 75.9 | 75.7 | 76.1 | 79.1 | 38.4 | 25 |
SAHI | 检测头 | ECA | F1/% | P/% | R/% | mAP50/% | FPS/帧每秒 |
---|---|---|---|---|---|---|---|
- | - | - | 70.2 | 76.7 | 64.8 | 72.1 | 54 |
√ | - | - | 76.1 | 81.2 | 71.6 | 75.2 | 8 |
- | √ | - | 76.4 | 76.8 | 76.0 | 77.6 | 27 |
- | - | √ | 76.8 | 77.9 | 75.7 | 78.0 | 40 |
√ | √ | - | 81.1 | 80.5 | 81.8 | 84.9 | 5 |
√ | - | √ | 81.5 | 82.8 | 80.2 | 84.6 | 6 |
- | √ | √ | 77.3 | 75.4 | 79.3 | 80.2 | 13 |
√ | √ | √ | 78.2 | 80.0 | 76.4 | 82.6 | 5 |
Table 5 Ablation experiment result
SAHI | 检测头 | ECA | F1/% | P/% | R/% | mAP50/% | FPS/帧每秒 |
---|---|---|---|---|---|---|---|
- | - | - | 70.2 | 76.7 | 64.8 | 72.1 | 54 |
√ | - | - | 76.1 | 81.2 | 71.6 | 75.2 | 8 |
- | √ | - | 76.4 | 76.8 | 76.0 | 77.6 | 27 |
- | - | √ | 76.8 | 77.9 | 75.7 | 78.0 | 40 |
√ | √ | - | 81.1 | 80.5 | 81.8 | 84.9 | 5 |
√ | - | √ | 81.5 | 82.8 | 80.2 | 84.6 | 6 |
- | √ | √ | 77.3 | 75.4 | 79.3 | 80.2 | 13 |
√ | √ | √ | 78.2 | 80.0 | 76.4 | 82.6 | 5 |
Fig. 13 Comparison between Improved YOLOv5 and frame difference method for independent use ((a) Comparison results,figure (a1) is the original image frame, figure (a2) is the detection result of frame difference method, figure (a3) is the motion region detected by frame difference method, and figure (a4) is the detection result of the improved YOLOv5 model; (b) Local amplification)
模型 | R/% | T/ms |
---|---|---|
改进的YOLOv5 | 80.6 | 265 |
帧差法 | 53.1 | 37 |
融合算法 | 84.2 | 313 |
Table 6 Fusion algorithm effect comparison
模型 | R/% | T/ms |
---|---|---|
改进的YOLOv5 | 80.6 | 265 |
帧差法 | 53.1 | 37 |
融合算法 | 84.2 | 313 |
[1] | 段锐, 邓晖, 邓逸川. ICT支持的塔吊安全管理框架——回顾与展望[J]. 图学学报, 2022, 43(1): 11-20. |
DUAN R, DENG H, DENG Y C. Information communications technology assisted tower crane safety management-review and prospect[J]. Journal of Graphics, 2022, 43(1): 11-20 (in Chinese). | |
[2] | HAN K, ZENG X D. Deep learning-based workers safety helmet wearing detection on construction sites using multi-scale features[J]. IEEE Access, 2022, 10: 718-729. |
[3] | 李华, 薛曦澄, 吴立舟, 等. 深度学习下吊装作业工人防护装备及吊钩检测方法[J]. 安全与环境学报, 2024, 24(3): 1027-1035. |
LI H, XUE X C, WU L Z, et al. Protective equipment and hook testing methods for workers in lifting operations under deep learning[J]. Journal of Safety and Environment, 2024, 24(3): 1027-1035 (in Chinese). | |
[4] | WU H, HAN Y, ZHANG M, et al. Identifying unsafe behavior of construction workers: a dynamic approach combining skeleton information and spatiotemporal features[J]. Journal of Construction Engineering and Management, 2023, 149(11): 04023115. |
[5] | 张知田, 王园园, 罗柱邦, 等. 塔吊与工人空间交互下危险场景自动检测[J]. 清华大学学报: 自然科学版, 2024, 64(2): 198-204. |
ZHANG Z T, WANG Y Y, LUO Z B, et al. Automatic detection of hazardous scenarios during spatial interaction between tower cranes and workers[J]. Journal of Tsinghua University: Science and Technology, 2024, 64(2): 198-204 (in Chinese). | |
[6] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(1): 142-158.
DOI PMID |
[7] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2014: 580-587. |
[8] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[9] | HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2980-2988. |
[10] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788. |
[11] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]// The 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37. |
[12] | 曹坤煜, 陈述, 陈云, 等. 混凝土坝面交叉作业安全风险智能识别方法[J]. 水力发电学报, 2023, 42(12): 146-158. |
CAO K Y, CHEN S, CHEN Y, et al. Intelligent identification method for safety risks in cross operation on concrete dam surface[J]. Journal of Hydroelectric Engineering, 2023, 42(12): 146-158 (in Chinese). | |
[13] | 邢金昊, 饶颖露, 张恒, 等. 基于改进YOLO的建筑预埋件检测算法[J]. 计算机应用与软件, 2021, 38(11): 179-184. |
XING J H, RAO Y L, ZHANG H, et al. Pre-buried parts detections based on improved YOLO model[J]. Computer Applications and Software, 2021, 38(11): 179-184 (in Chinese). | |
[14] | LI H B, WU D C, ZHANG W M, et al. YOLO-PL: helmet wearing detection algorithm based on improved YOLOv4[J]. Digital Signal Processing, 2024, 144: 104283. |
[15] | KOYUN O C, KESER R K, AKKAYA İ B, et al. Focus-and-Detect: a small object detection framework for aerial images[J]. Signal Processing: Image Communication, 2022, 104: 116675. |
[16] | YANG C H Y, HUANG Z H, WANG N Y. QueryDet: cascaded sparse query for accelerating high-resolution small object detection[C]// 2022 IEEE CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 13658-13667. |
[17] | GUO M H, XU T X, LIU J J, et al. Attention mechanisms in computer vision: a survey[J]. Computational Visual Media, 2022, 8(3): 331-368. |
[18] | MITTAL P, SHARMA A, SINGH R, et al. Dilated convolution based RCNN using feature fusion for low-altitude aerial objects[J]. Expert Systems with Applications, 2022, 199: 117106. |
[19] | XUE Y J, JU Z Y, LI Y M, et al. MAF-YOLO: multi-modal attention fusion based YOLO for pedestrian detection[J]. Infrared Physics & Technology, 2021, 118: 103906. |
[20] |
李小波, 李阳贵, 郭宁, 等. 融合注意力机制的YOLOv5口罩检测算法[J]. 图学学报, 2023, 44(1): 16-25.
DOI |
LI X B, LI Y G, GUO N, et al. Mask detection algorithm based on YOLOv5 integrating attention mechanism[J]. Journal of Graphics, 2023, 44(1): 16-25 (in Chinese). | |
[21] | AKYON F C, ALTINUC S O, TEMIZEL A. Slicing aided hyper inference and fine-tuning for small object detection[C]// 2022 IEEE International Conference on Image Processing. New York: IEEE Press, 2022: 966-970. |
[22] | KIM S, HONG S H, KIM H, et al. Small object detection (SOD) system for comprehensive construction site safety monitoring[J]. Automation in Construction, 2023, 156: 105103. |
[23] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7132-7141. |
[24] | WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 11531-11539. |
[25] | FAN Y, TIAN L W, YANG L. Moving object detection based on enhanced frame difference[C]// The 3rd International Conference on Computer Science and Communication Technology. Bellingham: SPIE, 2022: 125061C. |
[26] | 王玉萍, 曾毅. 结合帧差的核相关滤波弱小红外目标检测[J]. 红外技术, 2023, 45(7): 755-767. |
WANG Y P, ZENG Y. Weak and small infrared target detection combined with frame difference kernel correlation filtering[J]. Infrared Technology, 2023, 45(7): 755-767 (in Chinese). | |
[27] | HE H, MA S C, SUN L. Multi-moving target detection based on the combination of three frame difference algorithm and background difference algorithm[C]// 2018 WRC Symposium on Advanced Robotics and Automation. New York: IEEE Press, 2018: 141-146. |
[1] | SHI Hao, WANG Shu, HAN Jianhong, LUO Zhaoyi, WANG Yupei. Adversarial example generation method for open-vocabulary detectionlarge models based on visually-textual fusion loss [J]. Journal of Graphics, 2024, 45(6): 1222-1230. |
[2] | LI Zhenfeng, FU Shichen, XU Le, MENG Bo, ZHANG Xin, QING Jianjun. Research on gangue target detection algorithm based on MBI-YOLOv8 [J]. Journal of Graphics, 2024, 45(6): 1301-1312. |
[3] | LI Shengtao, HOU Liqun, DONG Yasong. Automatic reading of pointer meters based on R-YOLOv7 and MIMO-CTFNet [J]. Journal of Graphics, 2024, 45(6): 1313-1327. |
[4] | YAN Jianhong, RAN Tongxiao. Lightweight UAV image target detection algorithm based on YOLOv8 [J]. Journal of Graphics, 2024, 45(6): 1328-1337. |
[5] | HU Fengkuo, YE Lan, TAN Xianfeng, ZHANG Qinzhan, HU Zhixin, FANG Qing, WANG Lei, MAN Xiaofeng. A refined YOLOv8-based algorithm for lightweight pavement disease detection [J]. Journal of Graphics, 2024, 45(5): 892-900. |
[6] | WANG Yaru, FENG Lilong, SONG Xiaoke, QU Zhuo, YANG Ke, WANG Qianming, ZHAI Yongjie. TFD-YOLOv8: a transmission line foreign object detection method [J]. Journal of Graphics, 2024, 45(5): 901-912. |
[7] | LIU Yiyan, HAO Tingnan, HE Chen, CHANG Yingjie. Photovoltaic cell surface defect detection based on DBBR-YOLO [J]. Journal of Graphics, 2024, 45(5): 913-921. |
[8] | LI Gang, CAI Zehao, SUN Huaxun, ZHAO Zhenbing. Research on defect detection of transmission line fittings based on improved YOLOv8 and semantic knowledge fusion [J]. Journal of Graphics, 2024, 45(5): 979-986. |
[9] | XIE Guobo, LIN Songze, LIN Zhiyi, WU Chenfeng, LIANG Lihui. Road defect detection algorithm based on improved YOLOv7-tiny [J]. Journal of Graphics, 2024, 45(5): 987-997. |
[10] | LI Daxiang, JI Zhan, LIU Ying, TANG Yao. Improving YOLOv7 remote sensing image target detection algorithm [J]. Journal of Graphics, 2024, 45(4): 650-658. |
[11] | HU Xin, CHANG Yashu, QIN Hao, XIAO Jian, CHENG Hongliang. Binocular ranging method based on improved YOLOv8 and GMM image point set matching [J]. Journal of Graphics, 2024, 45(4): 714-725. |
[12] | NIU Weihua, GUO Xun. Rotating target detection algorithm in ship remote sensing images based on YOLOv8 [J]. Journal of Graphics, 2024, 45(4): 726-735. |
[13] | ZENG Zhichao, XU Yue, WANG Jingyu, YE Yuanlong, HUANG Zhikai, WANG Huan. A water surface target detection algorithm based on SOE-YOLO lightweight network [J]. Journal of Graphics, 2024, 45(4): 736-744. |
[14] | WU Bing, TIAN Ying. Research on multi-scale road damage detection algorithm based on attention mechanism [J]. Journal of Graphics, 2024, 45(4): 770-778. |
[15] | ZHAO Lei, LI Dong, FANG Jiandong, CAO Qi. Improved YOLO object detection algorithm for traffic signs [J]. Journal of Graphics, 2024, 45(4): 779-790. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||