Journal of Graphics ›› 2025, Vol. 46 ›› Issue (4): 763-774.DOI: 10.11996/JG.j.2095-302X.2025040763
• Image Processing and Computer Vision • Previous Articles Next Articles
WANG Ziyu1,2,3(), CAO Weiwei1,2, CAO Yuzhu1,2, LIU Meng4, CHEN Jun5,6, LIU Zhaobang1,2, ZHENG Jian1,2,3(
)
Received:
2024-12-31
Revised:
2025-02-26
Online:
2025-08-30
Published:
2025-08-11
Contact:
ZHENG Jian
About author:
First author contact:WANG Ziyu (2000-), master student. His main research interest covers medical image segmentation. E-mail:wangziyu_0731@mail.ustc.edu.cn
Supported by:
CLC Number:
WANG Ziyu, CAO Weiwei, CAO Yuzhu, LIU Meng, CHEN Jun, LIU Zhaobang, ZHENG Jian. Semi-supervised pulmonary airway segmentation based on dynamically decoupling intra-class regions[J]. Journal of Graphics, 2025, 46(4): 763-774.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025040763
Fig. 1 Illustrations of the severe intra-class imbalance problem in airway segmentation ((a) Airway structure; (b) Chest CT images in the transverse plane; (c) Local details; (d) Statistics of voxel counts and branch numbers of airway at different levels)
方法 | 标注使用比例 | 评价指标 | |||
---|---|---|---|---|---|
有标签 | 无标签 | Dice | TD | BD | |
3D U-Net | 10 | 0 | 85.76 | 67.64 | 56.18 |
3D U-Net | 20 | 0 | 90.65 | 75.67 | 65.60 |
3D U-Net | 100 | 0 | 93.48 | 84.38 | 76.48 |
MT | 10 | 90 | 90.77 | 70.25 | 58.05 |
UA-MT | 10 | 90 | 91.25 | 75.04 | 64.29 |
CPS | 10 | 90 | 90.53 | 75.60 | 65.06 |
ICT | 10 | 90 | 91.14 | 75.95 | 66.16 |
URPC | 10 | 90 | 91.24 | 76.94 | 65.78 |
BCP | 10 | 90 | 89.10 | 70.52 | 59.93 |
Ours | 10 | 90 | 91.61 | 81.34 | 72.93 |
MT | 20 | 80 | 91.46 | 77.47 | 67.28 |
UA-MT | 20 | 80 | 91.49 | 77.10 | 67.56 |
CPS | 20 | 80 | 91.41 | 78.87 | 69.57 |
ICT | 20 | 80 | 91.12 | 79.89 | 70.90 |
URPC | 20 | 80 | 90.74 | 78.93 | 69.01 |
BCP | 20 | 80 | 90.55 | 71.84 | 61.10 |
Ours | 20 | 80 | 91.96 | 81.88 | 73.82 |
Table 1 Comparison experiment on ATM22 dataset/%
方法 | 标注使用比例 | 评价指标 | |||
---|---|---|---|---|---|
有标签 | 无标签 | Dice | TD | BD | |
3D U-Net | 10 | 0 | 85.76 | 67.64 | 56.18 |
3D U-Net | 20 | 0 | 90.65 | 75.67 | 65.60 |
3D U-Net | 100 | 0 | 93.48 | 84.38 | 76.48 |
MT | 10 | 90 | 90.77 | 70.25 | 58.05 |
UA-MT | 10 | 90 | 91.25 | 75.04 | 64.29 |
CPS | 10 | 90 | 90.53 | 75.60 | 65.06 |
ICT | 10 | 90 | 91.14 | 75.95 | 66.16 |
URPC | 10 | 90 | 91.24 | 76.94 | 65.78 |
BCP | 10 | 90 | 89.10 | 70.52 | 59.93 |
Ours | 10 | 90 | 91.61 | 81.34 | 72.93 |
MT | 20 | 80 | 91.46 | 77.47 | 67.28 |
UA-MT | 20 | 80 | 91.49 | 77.10 | 67.56 |
CPS | 20 | 80 | 91.41 | 78.87 | 69.57 |
ICT | 20 | 80 | 91.12 | 79.89 | 70.90 |
URPC | 20 | 80 | 90.74 | 78.93 | 69.01 |
BCP | 20 | 80 | 90.55 | 71.84 | 61.10 |
Ours | 20 | 80 | 91.96 | 81.88 | 73.82 |
方法 | 标注使用比例 | 评价指标 | |||
---|---|---|---|---|---|
有标签 | 无标签 | Dice | TD | BD | |
3D U-Net | 10 | 0 | 86.77 | 59.87 | 48.32 |
3D U-Net | 20 | 0 | 90.97 | 66.25 | 54.40 |
3D U-Net | 100 | 0 | 92.30 | 79.89 | 71.43 |
MT | 10 | 90 | 90.99 | 66.76 | 55.58 |
UA-MT | 10 | 90 | 90.53 | 67.45 | 56.49 |
CPS | 10 | 90 | 91.27 | 69.25 | 58.34 |
ICT | 10 | 90 | 91.64 | 71.33 | 60.53 |
URPC | 10 | 90 | 91.51 | 71.56 | 61.52 |
BCP | 10 | 90 | 87.99 | 63.34 | 52.09 |
Ours | 10 | 90 | 91.83 | 73.36 | 63.01 |
MT | 20 | 80 | 91.66 | 70.17 | 59.83 |
UA-MT | 20 | 80 | 91.60 | 71.46 | 61.01 |
CPS | 20 | 80 | 92.24 | 73.17 | 62.41 |
ICT | 20 | 80 | 92.27 | 74.56 | 64.80 |
URPC | 20 | 80 | 91.63 | 73.59 | 64.46 |
BCP | 20 | 80 | 91.05 | 70.34 | 59.54 |
Ours | 20 | 80 | 92.34 | 75.80 | 66.02 |
Table 2 Comparison experiment on BAS dataset/%
方法 | 标注使用比例 | 评价指标 | |||
---|---|---|---|---|---|
有标签 | 无标签 | Dice | TD | BD | |
3D U-Net | 10 | 0 | 86.77 | 59.87 | 48.32 |
3D U-Net | 20 | 0 | 90.97 | 66.25 | 54.40 |
3D U-Net | 100 | 0 | 92.30 | 79.89 | 71.43 |
MT | 10 | 90 | 90.99 | 66.76 | 55.58 |
UA-MT | 10 | 90 | 90.53 | 67.45 | 56.49 |
CPS | 10 | 90 | 91.27 | 69.25 | 58.34 |
ICT | 10 | 90 | 91.64 | 71.33 | 60.53 |
URPC | 10 | 90 | 91.51 | 71.56 | 61.52 |
BCP | 10 | 90 | 87.99 | 63.34 | 52.09 |
Ours | 10 | 90 | 91.83 | 73.36 | 63.01 |
MT | 20 | 80 | 91.66 | 70.17 | 59.83 |
UA-MT | 20 | 80 | 91.60 | 71.46 | 61.01 |
CPS | 20 | 80 | 92.24 | 73.17 | 62.41 |
ICT | 20 | 80 | 92.27 | 74.56 | 64.80 |
URPC | 20 | 80 | 91.63 | 73.59 | 64.46 |
BCP | 20 | 80 | 91.05 | 70.34 | 59.54 |
Ours | 20 | 80 | 92.34 | 75.80 | 66.02 |
方法 | 标注使用比例 | 评价指标 | |||
---|---|---|---|---|---|
有标签 | 无标签 | Dice | TD | BD | |
3D U-Net | 10 | 0 | 80.61 | 49.22 | 40.37 |
3D U-Net | 20 | 0 | 81.42 | 52.77 | 42.85 |
3D U-Net | 100 | 0 | 83.78 | 60.56 | 48.99 |
MT | 10 | 90 | 82.78 | 49.19 | 40.46 |
UA-MT | 10 | 90 | 83.11 | 53.81 | 44.53 |
CPS | 10 | 90 | 82.51 | 54.23 | 43.92 |
ICT | 10 | 90 | 82.96 | 55.56 | 45.31 |
URPC | 10 | 90 | 83.92 | 55.44 | 45.81 |
BCP | 10 | 90 | 82.80 | 52.12 | 42.59 |
Ours | 10 | 90 | 83.87 | 58.98 | 48.63 |
MT | 20 | 80 | 83.64 | 56.95 | 46.56 |
UA-MT | 20 | 80 | 83.40 | 57.22 | 46.73 |
CPS | 20 | 80 | 82.78 | 55.81 | 45.61 |
ICT | 20 | 80 | 83.63 | 58.80 | 47.92 |
URPC | 20 | 80 | 83.57 | 58.43 | 47.91 |
BCP | 20 | 80 | 82.84 | 52.53 | 43.32 |
Ours | 20 | 80 | 83.88 | 59.40 | 48.54 |
Table 3 Comparison experiment on a real-world dataset/%
方法 | 标注使用比例 | 评价指标 | |||
---|---|---|---|---|---|
有标签 | 无标签 | Dice | TD | BD | |
3D U-Net | 10 | 0 | 80.61 | 49.22 | 40.37 |
3D U-Net | 20 | 0 | 81.42 | 52.77 | 42.85 |
3D U-Net | 100 | 0 | 83.78 | 60.56 | 48.99 |
MT | 10 | 90 | 82.78 | 49.19 | 40.46 |
UA-MT | 10 | 90 | 83.11 | 53.81 | 44.53 |
CPS | 10 | 90 | 82.51 | 54.23 | 43.92 |
ICT | 10 | 90 | 82.96 | 55.56 | 45.31 |
URPC | 10 | 90 | 83.92 | 55.44 | 45.81 |
BCP | 10 | 90 | 82.80 | 52.12 | 42.59 |
Ours | 10 | 90 | 83.87 | 58.98 | 48.63 |
MT | 20 | 80 | 83.64 | 56.95 | 46.56 |
UA-MT | 20 | 80 | 83.40 | 57.22 | 46.73 |
CPS | 20 | 80 | 82.78 | 55.81 | 45.61 |
ICT | 20 | 80 | 83.63 | 58.80 | 47.92 |
URPC | 20 | 80 | 83.57 | 58.43 | 47.91 |
BCP | 20 | 80 | 82.84 | 52.53 | 43.32 |
Ours | 20 | 80 | 83.88 | 59.40 | 48.54 |
Fig. 4 Visualization of the segmentation results produced by different methods on the ATM22 dataset ((a) Image; (b) Ground truth; (c) Ours; (d) Sup only; (e) MT; (f) UAMT; (g) CPS; (h) ICT; (i) URPC; (j) BCP)
数据集 | 标注使用比例/% | 模块 | 指标/% | |||||
---|---|---|---|---|---|---|---|---|
有标注 | 无标注 | 基线模型 | 困难区域 | 容易区域 | Dice | TD | BD | |
ATM22 | 10 | 0 | 85.76 | 67.64 | 56.18 | |||
10 | 90 | √ | 89.84 | 73.98 | 63.35 | |||
10 | 90 | √ | √ | 91.69 | 78.97 | 69.31 | ||
10 | 90 | √ | √ | 91.86 | 80.56 | 71.84 | ||
10 | 90 | √ | √ | √ | 91.61 | 81.34 | 72.93 | |
BAS | 10 | 0 | 86.77 | 59.87 | 48.32 | |||
10 | 90 | √ | 91.16 | 70.06 | 59.38 | |||
10 | 90 | √ | √ | 91.89 | 72.6 | 62.05 | ||
10 | 90 | √ | √ | 91.96 | 72.73 | 62.63 | ||
10 | 90 | √ | √ | √ | 91.83 | 73.36 | 63.01 |
Table 4 Results of the ablation study of each component on the ATM22 and BAS datasets
数据集 | 标注使用比例/% | 模块 | 指标/% | |||||
---|---|---|---|---|---|---|---|---|
有标注 | 无标注 | 基线模型 | 困难区域 | 容易区域 | Dice | TD | BD | |
ATM22 | 10 | 0 | 85.76 | 67.64 | 56.18 | |||
10 | 90 | √ | 89.84 | 73.98 | 63.35 | |||
10 | 90 | √ | √ | 91.69 | 78.97 | 69.31 | ||
10 | 90 | √ | √ | 91.86 | 80.56 | 71.84 | ||
10 | 90 | √ | √ | √ | 91.61 | 81.34 | 72.93 | |
BAS | 10 | 0 | 86.77 | 59.87 | 48.32 | |||
10 | 90 | √ | 91.16 | 70.06 | 59.38 | |||
10 | 90 | √ | √ | 91.89 | 72.6 | 62.05 | ||
10 | 90 | √ | √ | 91.96 | 72.73 | 62.63 | ||
10 | 90 | √ | √ | √ | 91.83 | 73.36 | 63.01 |
Fig. 5 Visualization of the complicated regions (The number represents the voxel count in the complicated regions) ((a) Ground truth; (b) 2 000 iterations; (c) 10 000 iterations; (d) 20 000 iterations)
Fig. 7 Visualization of the ablation experiment results ((a) Image; (b) Ground truth; (c) Baseline; (d) Baseline+Complicated; (e) Baseline+Simple; (f) Baseline+Complicated+Simple))
数据集 | 标注使用比例/% | 方法 | 指标/% | |||
---|---|---|---|---|---|---|
有标注 | 无标注 | Dice | TD | BD | ||
ATM22 | 10 | 0 | Fixed Thershold | 89.87 | 71.84 | 61.15 |
10 | 90 | Entropy | 91.60 | 79.30 | 70.03 | |
10 | 90 | Prototype | 91.97 | 78.52 | 69.08 | |
10 | 90 | Ours | 91.61 | 81.34 | 72.93 | |
BAS | 10 | 0 | Fixed Thershold | 85.34 | 50.87 | 40.78 |
10 | 90 | Entropy | 91.26 | 70.87 | 60.47 | |
10 | 90 | Prototype | 91.48 | 71.24 | 60.21 | |
10 | 90 | Ours | 91.83 | 73.36 | 63.01 |
Table 5 Comparison results of different thresholding measures
数据集 | 标注使用比例/% | 方法 | 指标/% | |||
---|---|---|---|---|---|---|
有标注 | 无标注 | Dice | TD | BD | ||
ATM22 | 10 | 0 | Fixed Thershold | 89.87 | 71.84 | 61.15 |
10 | 90 | Entropy | 91.60 | 79.30 | 70.03 | |
10 | 90 | Prototype | 91.97 | 78.52 | 69.08 | |
10 | 90 | Ours | 91.61 | 81.34 | 72.93 | |
BAS | 10 | 0 | Fixed Thershold | 85.34 | 50.87 | 40.78 |
10 | 90 | Entropy | 91.26 | 70.87 | 60.47 | |
10 | 90 | Prototype | 91.48 | 71.24 | 60.21 | |
10 | 90 | Ours | 91.83 | 73.36 | 63.01 |
[1] |
尤堃, 郝鹏翼, 吴福理, 等. 基于三维卷积神经网络的肺结节假阳性筛查[J]. 图学学报, 2019, 40(3): 423-428.
DOI |
YOU K, HAO P Y, WU F L, et al. False positive reduction of pulmonary nodules using 3D CNN[J]. Journal of Graphics, 2019, 40(3): 423-428 (in Chinese).
DOI |
|
[2] |
蒋武君, 支力佳, 张少敏, 等. 基于通道残差嵌套U结构的CT影像肺结节分割方法[J]. 图学学报, 2023, 44(5): 879-889.
DOI |
JIANG W J, ZHI L J, ZHANG S M, et al. CT image segmentation of lung nodules based on channel residual nested U structure[J]. Journal of Graphics, 2023, 44(5): 879-889 (in Chinese). | |
[3] |
FETITA C I, PRETEUX F, BEIGELMAN-AUBRY C, et al. Pulmonary airways: 3-D reconstruction from multislice CT and clinical investigation[J]. IEEE Transactions on Medical Imaging, 2004, 23(11): 1353-1364.
PMID |
[4] |
HOWLING S J, EVANS T W, HANSELL D M. The significance of bronchial dilatation on CT in patients with adult respiratory distress syndrome[J]. Clinical Radiology, 1998, 53(2): 105-109.
DOI PMID |
[5] | QIN Y L, ZHENG H, GU Y, et al. Learning tubule-sensitive CNNs for pulmonary airway and artery-vein segmentation in CT[J]. IEEE Transactions on Medical Imaging, 2021, 40(6): 1603-1617. |
[6] | WANG P Y, GUO D Z, ZHENG D D, et al. Accurate airway tree segmentation in CT scans via anatomy-aware multi-class segmentation and topology-guided iterative learning[J]. IEEE Transactions on Medical Imaging, 2024, 43(12): 4294-4306. |
[7] |
CHARBONNIER J P, VAN RIKXOORT E M, SETIO A A A, et al. Improving airway segmentation in computed tomography using leak detection with convolutional networks[J]. Medical Image Analysis, 2017, 36: 52-60.
DOI PMID |
[8] |
YUN J, PARK J, YU D, et al. Improvement of fully automated airway segmentation on volumetric computed tomographic images using a 2.5 dimensional convolutional neural net[J]. Medical Image Analysis, 2019, 51: 13-20.
DOI PMID |
[9] | ZHANG M H, WU Y Q, ZHANG H X, et al. Multi-site, multi-domain airway tree modeling[J]. Medical Image Analysis, 2023, 90: 102957. |
[10] | QIN Y L, CHEN M J, ZHENG H, et al. AirwayNet: a voxel-connectivity aware approach for accurate airway segmentation using convolutional neural networks[C]// The 22nd International Conference on Medical Image Computing and Computer Assisted Intervention - MICCAI 2019. Cham: Springer, 2019: 212-220. |
[11] | OUALI Y, HUDELOT C, TAMI M. Semi-supervised semantic segmentation with cross-consistency training[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 12671-12681. |
[12] | CHEN X K, YUAN Y H, ZENG G, et al. Semi-supervised semantic segmentation with cross pseudo supervision[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 2613-2622. |
[13] | TARVAINEN A, VALPOLA H. Mean teachers are better role models: weight-averaged consistency targets improve semi- supervised deep learning results[C]// The 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 1195-1204. |
[14] | SHEN N, XU T F, BIAN Z Y, et al. SCANet: a unified semi-supervised learning framework for vessel segmentation[J]. IEEE Transactions on Medical Imaging, 2023, 42(9): 2476-2489. |
[15] | YU L Q, WANG S J, LI X M, et al. Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation[C]// The 22nd International Conference on Medical Image Computing and Computer Assisted Intervention - MICCAI 2019. Cham: Springer, 2019: 605-613. |
[16] | LUO X D, LIAO W J, CHEN J N, et al. Efficient semi-supervised gross target volume of nasopharyngeal carcinoma segmentation via uncertainty rectified pyramid consistency[C]// The 24th International Conference on Medical Image Computing and Computer Assisted Intervention - MICCAI 2021. Cham: Springer, 2021: 318-329. |
[17] | VERMA V, KAWAGUCHI K, LAMB A, et al. Interpolation consistency training for semi-supervised learning[J]. Neural Networks, 2022, 145: 90-106. |
[18] | BAI Y H, CHEN D W, LI Q L, et al. Bidirectional copy-paste for semi-supervised medical image segmentation[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 11514-11524. |
[19] | BASAK H, GHOSAL S, SARKAR R. Addressing class imbalance in semi-supervised image segmentation: a study on cardiac MRI[C]// The 25th International Conference on Medical Image Computing and Computer Assisted Intervention - MICCAI 2022. Cham: Springer, 2022: 224-233. |
[20] | LIN Y Q, YAO H F, LI Z Z, et al. Calibrating label distribution for class-imbalanced barely-supervised knee segmentation[C]// The 25th International Conference on Medical Image Computing and Computer Assisted Intervention - MICCAI 2022. Cham: Springer, 2022: 109-118. |
[21] | ZHAO X Y, QI Z X, WANG S, et al. RCPS: rectified contrastive pseudo supervision for semi-supervised medical image segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(1): 251-261. |
[22] | SHEN Z Q, CAO P, YANG H, et al. Co-training with high-confidence pseudo labels for semi-supervised medical image segmentation[C]// The 32nd International Joint Conference on Artificial Intelligence. New York: ACM, 2023: 4199-4207. |
[23] | XU Z, WANG Y X, LU D H, et al. Ambiguity-selective consistency regularization for mean-teacher semi-supervised medical image segmentation[J]. Medical Image Analysis, 2023, 88: 102880. |
[24] | ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al.3D U-Net: learning dense volumetric segmentation from sparse annotation[C]// The 19th International Conference on Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. Cham: Springer, 2016: 424-432. |
[25] | NORTHCUTT C, JIANG L, CHUANG I. Confident learning: estimating uncertainty in dataset labels[J]. Journal of Artificial Intelligence Research, 2021, 70: 1373-1411. |
[26] | HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C]// 2015 IEEE International Conference on Computer Vision. New York: IEEE Press, 2015: 1026-1034. |
[27] |
ARMATO S G, MCLENNAN G, BIDAUT L, et al. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scans[J]. Medical Physics, 2011, 38(2): 915-931.
PMID |
[28] |
HOFMANNINGER J, PRAYER F, PAN J, et al. Automatic lung segmentation in routine imaging is primarily a data diversity problem, not a methodology problem[J]. European Radiology Experimental, 2020, 4(1): 50.
DOI PMID |
[29] | ZHANG M H, GU Y. Towards connectivity-aware pulmonary airway segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(1): 321-332. |
[30] | LEE T C, KASHYAP R L, CHU C N. Building skeleton models via 3-D medial surface axis thinning algorithms[J]. CVGIP: Graphical Models and Image Processing, 1994, 56(6): 462-478. |
[31] | CZOLBE S, ARNAVAZ K, KRAUSE O, et al. Is segmentation uncertainty useful?[C]// The 27th International Conference on Information Processing in Medical Imaging. Cham: Springer, 2021: 715-726. |
[32] | HAN J F, LUO P, WANG X G. Deep self-learning from noisy labels[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 5137-5146. |
[1] | WANG Daolei, DING Zijian, YANG Jun, ZHENG Shaokai, ZHU Rui, ZHAO Wenbin. Large scene reconstruction method based on voxel grid feature of NeRF [J]. Journal of Graphics, 2025, 46(3): 502-509. |
[2] | SUN Hao, XIE Tao, HE Long, GUO Wenzhong, YU Yongfang, WU Qijun, WANG Jianwei, DONG Hui. Research on multimodal text-visual large model for robotic terrain perception algorithm [J]. Journal of Graphics, 2025, 46(3): 558-567. |
[3] | ZHAI Yongjie, WANG Luyao, ZHAO Xiaoyu, HU Zhedong, WANG Qianming, WANG Yaru. Multi-fitting detection for transmission lines based on a cascade query-position relationship method [J]. Journal of Graphics, 2025, 46(2): 288-299. |
[4] | PAN Shuyan, LIU Liqun. MSFAFuse: sar and optical image fusion model based on multi-scale feature information and attention mechanism [J]. Journal of Graphics, 2025, 46(2): 300-311. |
[5] | ZHANG Tiansheng, ZHU Minfeng, REN Yiwen, WANG Chenhan, ZHANG Lidong, ZHANG Wei, CHEN Wei. BPA-SAM: box prompt augmented SAM for traditional Chinese realistic painting [J]. Journal of Graphics, 2025, 46(2): 322-331. |
[6] | SUN Heyi, LI Yixiao, TIAN Xi, ZHANG Songhai. Image to 3D vase generation technology combining procedural content generation and diffusion models [J]. Journal of Graphics, 2025, 46(2): 332-344. |
[7] | FANG Chenghao, WANG Kangkan. 3D human pose and shape estimation from single-view point clouds with semi-supervised learning [J]. Journal of Graphics, 2025, 46(2): 393-401. |
[8] | CHEN Ruiqi, LIU Xiaofei, WAN Feng, HOU Peng, SHEN Jinyi. Simulation and prediction method of satellite solar wing deployment test driven by digital twin [J]. Journal of Graphics, 2025, 46(2): 449-458. |
[9] | WANG Yan, ZHANG Muyu, LIU Xiuzhen. Visual interactive meaning evaluation method of movie posters based on deep learning [J]. Journal of Graphics, 2025, 46(1): 221-232. |
[10] | LI Qiong, KAO Yueying, ZHANG Ying, XU Pei. Review on object detection in UAV aerial images [J]. Journal of Graphics, 2024, 45(6): 1145-1164. |
[11] | LIU Canfeng, SUN Hao, DONG Hui. Molecular amplification time series prediction research combining Transformer with Kolmogorov-Arnold network [J]. Journal of Graphics, 2024, 45(6): 1256-1265. |
[12] | SONG Sicheng, CHEN Chen, LI Chenhui, WANG Changbo. Spatiotemporal data visualization based on density map multi-target tracking [J]. Journal of Graphics, 2024, 45(6): 1289-1300. |
[13] | WANG Zongji, LIU Yunfei, LU Feng. Cloud Sphere: a 3D shape representation method via progressive deformation [J]. Journal of Graphics, 2024, 45(6): 1375-1388. |
[14] | XU Dandan, CUI Yong, ZHANG Shiqian, LIU Yucong, LIN Yusong. Optimizing the visual effects of 3D rendering in medical imaging: a technical review [J]. Journal of Graphics, 2024, 45(5): 879-891. |
[15] | HU Fengkuo, YE Lan, TAN Xianfeng, ZHANG Qinzhan, HU Zhixin, FANG Qing, WANG Lei, MAN Xiaofeng. A refined YOLOv8-based algorithm for lightweight pavement disease detection [J]. Journal of Graphics, 2024, 45(5): 892-900. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||