Journal of Graphics ›› 2023, Vol. 44 ›› Issue (2): 313-323.DOI: 10.11996/JG.j.2095-302X.2023020313
Previous Articles Next Articles
CHEN Jing1,2(), YANG Xue-zhi2,3(
), CHEN Jing1, LIU Xue-nan1,2
Received:
2022-06-23
Accepted:
2022-08-22
Online:
2023-04-30
Published:
2023-05-01
Contact:
YANG Xue-zhi (1970-), professor, Ph.D. His main research interests cover digital signal processing, computer vision. E-mail:About author:
CHEN Jing (1997-),master student. Her main research interests cover video signal processing, video medicine. E-mail:chenj_hfut@163.com
Supported by:
CLC Number:
CHEN Jing, YANG Xue-zhi, CHEN Jing, LIU Xue-nan. Video atrial fibrillation detection using self-attentional anti-interference network[J]. Journal of Graphics, 2023, 44(2): 313-323.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023020313
特征 | 房颤患者(100例) | 正常测试者(100例) |
---|---|---|
年龄(岁) | 62.76±10.29 | 63.32±10.99 |
性别(男性∶女性) | 59∶41 | 44∶56 |
心率(次/分钟) | 72.14±11.06 | 78.35±13.43 |
刘海(%) | 34.0 | 27.0 |
胡子(%) | 5 | 9 |
眼镜(%) | 9 | 7 |
Table 1 Dataset feature Table
特征 | 房颤患者(100例) | 正常测试者(100例) |
---|---|---|
年龄(岁) | 62.76±10.29 | 63.32±10.99 |
性别(男性∶女性) | 59∶41 | 44∶56 |
心率(次/分钟) | 72.14±11.06 | 78.35±13.43 |
刘海(%) | 34.0 | 27.0 |
胡子(%) | 5 | 9 |
眼镜(%) | 9 | 7 |
方法 | SE | SP | PPV | NPV | Acc |
---|---|---|---|---|---|
Similarity | 0.807 | 0.808 | 0.819 | 0.822 | 0.864 |
LSTM | 0.812 | 0.819 | 0.834 | 0.831 | 0.875 |
Region | 0.827 | 0.832 | 0.853 | 0.849 | 0.891 |
本文 | 0.889 | 0.894 | 0.901 | 0.918 | 0.934 |
Table 2 Experimental results of static scene comparison
方法 | SE | SP | PPV | NPV | Acc |
---|---|---|---|---|---|
Similarity | 0.807 | 0.808 | 0.819 | 0.822 | 0.864 |
LSTM | 0.812 | 0.819 | 0.834 | 0.831 | 0.875 |
Region | 0.827 | 0.832 | 0.853 | 0.849 | 0.891 |
本文 | 0.889 | 0.894 | 0.901 | 0.918 | 0.934 |
方法 | IPI误差指标 | 房颤分类指标 | ||||||
---|---|---|---|---|---|---|---|---|
SDE | ME | MAE | SE | SP | PPV | NPV | Acc | |
Similarity | 199.1 | 96.2 | 188.3 | 0.712 | 0.657 | 0.735 | 0.724 | 0.702 |
LSTM | 175.6 | 70.5 | 162.1 | 0.731 | 0.697 | 0.754 | 0.763 | 0.721 |
Region | 169.1 | 68.4 | 150.3 | 0.782 | 0.726 | 0.794 | 0.773 | 0.752 |
本文 | 142.1 | 51.6 | 115.8 | 0.846 | 0.859 | 0.869 | 0.851 | 0.876 |
Table 3 Dynamic scene experimental results
方法 | IPI误差指标 | 房颤分类指标 | ||||||
---|---|---|---|---|---|---|---|---|
SDE | ME | MAE | SE | SP | PPV | NPV | Acc | |
Similarity | 199.1 | 96.2 | 188.3 | 0.712 | 0.657 | 0.735 | 0.724 | 0.702 |
LSTM | 175.6 | 70.5 | 162.1 | 0.731 | 0.697 | 0.754 | 0.763 | 0.721 |
Region | 169.1 | 68.4 | 150.3 | 0.782 | 0.726 | 0.794 | 0.773 | 0.752 |
本文 | 142.1 | 51.6 | 115.8 | 0.846 | 0.859 | 0.869 | 0.851 | 0.876 |
Fig. 6 Pulse signal diagram for each comparison method ((a) Original signal; (b) PPG signal; (c) Similarity method; (d) LSTM method; (e) Region method; (f) Ours)
方法 | IPI误差指标 | 房颤分类指标 | |||||||
---|---|---|---|---|---|---|---|---|---|
SDE | ME | MAE | SE | SP | PPV | NPV | Acc | ||
全连接网络+RBF-AF | 196.2 | 95.8 | 183.8 | 0.710 | 0.717 | 0.732 | 0.701 | 0.701 | |
去噪编码器+RBF-AF | 170.7 | 72.4 | 165.1 | 0.821 | 0.726 | 0.729 | 0.794 | 0.759 | |
卷积编码器+RBF-AF | 171.5 | 72.9 | 163.3 | 0.811 | 0.708 | 0.711 | 0.782 | 0.763 | |
本文 | 注意力编码器+CNN | 160.8 | 65.4 | 155.1 | 0.837 | 0.752 | 0.720 | 0.802 | 0.794 |
注意力编码器+ Loss 1 | 166.8 | 69.5 | 160.1 | 0.823 | 0.748 | 0.713 | 0.794 | 0.812 | |
注意力编码器+RBF-AF | 142.1 | 51.6 | 115.8 | 0.846 | 0.859 | 0.869 | 0.851 | 0.876 |
Table 4 Ablation experimental results
方法 | IPI误差指标 | 房颤分类指标 | |||||||
---|---|---|---|---|---|---|---|---|---|
SDE | ME | MAE | SE | SP | PPV | NPV | Acc | ||
全连接网络+RBF-AF | 196.2 | 95.8 | 183.8 | 0.710 | 0.717 | 0.732 | 0.701 | 0.701 | |
去噪编码器+RBF-AF | 170.7 | 72.4 | 165.1 | 0.821 | 0.726 | 0.729 | 0.794 | 0.759 | |
卷积编码器+RBF-AF | 171.5 | 72.9 | 163.3 | 0.811 | 0.708 | 0.711 | 0.782 | 0.763 | |
本文 | 注意力编码器+CNN | 160.8 | 65.4 | 155.1 | 0.837 | 0.752 | 0.720 | 0.802 | 0.794 |
注意力编码器+ Loss 1 | 166.8 | 69.5 | 160.1 | 0.823 | 0.748 | 0.713 | 0.794 | 0.812 | |
注意力编码器+RBF-AF | 142.1 | 51.6 | 115.8 | 0.846 | 0.859 | 0.869 | 0.851 | 0.876 |
[1] | CHUNG M K, ECKHARDT L L, CHEN L Y, et al. Lifestyle and risk factor modification for reduction of atrial fibrillation: a scientific statement from the American heart association[J]. Circulation, 2020, 141(16): e750-e772. |
[2] |
HINDRICKS G, POTPARA T, DAGRES N, et al. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the task force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC[J]. European Heart Journal, 2020, 42(5): 373-498.
DOI URL |
[3] |
GUO Y T, WANG H, ZHANG H, et al. Mobile photoplethysmographic technology to detect atrial fibrillation[J]. Journal of the American College of Cardiology, 2019, 74(19): 2365-2375.
DOI PMID |
[4] |
SUN Y, THAKOR N. Photoplethysmography revisited: from contact to noncontact, from point to imaging[J]. IEEE Transactions on Bio-Medical Engineering, 2016, 63(3): 463-477.
DOI PMID |
[5] | 周双, 杨学志, 金兢, 等. 采用自适应信号恢复算法的非接触式心率检测[J]. 中国图象图形学报, 2019, 24(10): 1670-1682. |
ZHOU S, YANG X Z, JIN J, et al. Non-contact heart rate detection using self-adaptive signal recovery algorithm[J]. Journal of Image and Graphics, 2019, 24(10): 1670-1682. (in Chinese) | |
[6] |
VERKRUYSSE W, SVAASAND L O, NELSON J S. Remote plethysmographic imaging using ambient light[J]. Optics Express, 2008, 16(26): 21434-21445.
DOI PMID |
[7] |
FAVILLA R, ZUCCALÀ V C, COPPINI G. Heart rate and heart rate variability from single-channel video and ICA integration of multiple signals[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(6): 2398-2408.
DOI PMID |
[8] |
WANG W J, STUIJK S, DE HAAN G. Exploiting spatial redundancy of image sensor for motion robust rPPG[J]. IEEE Transactions on Biomedical Engineering, 2015, 62(2): 415-425.
DOI URL |
[9] |
POH M Z, MCDUFF D J, PICARD R W. Advancements in noncontact, multiparameter physiological measurements using a webcam[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(1): 7-11.
DOI URL |
[10] | LIU X N, YANG X Z, JIN J, et al. Self-adaptive signal separation for non-contact heart rate estimation from facial video in realistic environments[J]. Physiological Measurement, 2018, 39(6): 06NT01. |
[11] |
GHODRATIGOHAR M, GHANADIAN H, AL OSMAN H. A remote respiration rate measurement method for non-stationary subjects using CEEMDAN and machine learning[J]. IEEE Sensors Journal, 2020, 20(3): 1400-1410.
DOI URL |
[12] | LIU X N, YANG X Z, WANG D L, et al. Detecting pulse rates from facial videos recorded in unstable lighting conditions: an adaptive spatiotemporal homomorphic filtering algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-15. |
[13] |
COUDERC J P, KYAL S, MESTHA L K, et al. Detection of atrial fibrillation using contactless facial video monitoring[J]. Heart Rhythm, 2015, 12(1): 195-201.
DOI URL |
[14] | CORINO V, IOZZIA L, MARIANI A, et al. Identification of atrial fibrillation episodes using a camera as contactless sensor[C]// 2017 Computing in Cardiology Conference. New York: IEEE Press, 2017: 1-4. |
[15] |
CHENG P, CHEN Z C, LI Q Z, et al. Atrial fibrillation identification with PPG signals using a combination of time-frequency analysis and deep learning[J]. IEEE Access, 8: 172692-172706.
DOI URL |
[16] | 郭一楠, 邵慧杰, 巩敦卫, 等. 基于希尔伯特黄变换和深度卷积神经网络的房颤检测[J]. 电子与信息学报, 2022, 44(1): 99-106. |
GUO Y N, SHAO H J, GONG D W, et al. Atrial fibrillation detection based on Hilbert-Huang transform and deep convolutional neural network[J]. Journal of Electronics & Information Technology, 2022, 44(1): 99-106. (in Chinese) | |
[17] |
KWON S, HONG J, CHOI E K, et al. Deep learning approaches to detect atrial fibrillation using photoplethysmographic signals: algorithms development study[J]. JMIR MHealth and UHealth, 2019, 7(6): e12770.
DOI URL |
[18] |
YAN B P, LAI W H S, CHAN C K Y, et al. Contact-free screening of atrial fibrillation by a smartphone using facial pulsatile photoplethysmographic signals[J]. Journal of the American Heart Association, 2018, 7(8): e008585.
DOI URL |
[19] |
SHI J G, ALIKHANI I, LI X B, et al. Atrial fibrillation detection from face videos by fusing subtle variations[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(8): 2781-2795.
DOI URL |
[20] | LI X B, CHEN J, ZHAO G Y, et al. Remote heart rate measurement from face videos under realistic situations[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press: 4264-4271. |
[21] | ASTHANA A, ZAFEIRIOU S, CHENG S Y, et al. Robust discriminative response map fitting with constrained local models[C]// 2013 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press: 3444-3451. |
[22] |
KUMAR M, VEERARAGHAVAN A, SABHARWAL A. DistancePPG: robust non-contact vital signs monitoring using a camera[J]. Biomedical Optics Express, 2015, 6(5): 1565-1588.
DOI PMID |
[23] |
DE HAAN G, JEANNE V. Robust pulse rate from chrominance-based rPPG[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(10): 2878-2886.
DOI URL |
[24] | WANG C, ZHU M X, WANG X, et al. Time-frequency analysis of electroencephalogram signals in a cognitive decision-making task[C]// The 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. New York: IEEE Press: 3469-3472. |
[25] |
KUMAR A, TOMAR H, MEHLA V K, et al. Stationary wavelet transform based ECG signal denoising method[J]. ISA Transactions, 2021, 114: 251-262.
DOI PMID |
[26] |
COHEN M X. A better way to define and describe Morlet wavelets for time-frequency analysis[J]. NeuroImage, 2019, 199: 81-86.
DOI PMID |
[27] |
HUMPHREYS G W, SUI J. Attentional control and the self: the self-attention network (SAN)[J]. Cognitive Neuroscience, 2016, 7(1-4): 5-17.
DOI PMID |
[28] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all You need[C]// The 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000-6010. |
[29] | VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2625. |
[1] | HU Xin, ZHOU Yun-qiang, XIAO Jian, YANG Jie. Surface defect detection of threaded steel based on improved YOLOv5 [J]. Journal of Graphics, 2023, 44(3): 427-437. |
[2] | LI Gang, ZHANG Yun-tao, WANG Wen-kai, ZHANG Dong-yang. Defect detection method of transmission line bolts based on DETR and prior knowledge fusion [J]. Journal of Graphics, 2023, 44(3): 438-447. |
[3] | MAO Ai-kun, LIU Xin-ming, CHEN Wen-zhuang, SONG Shao-lou. Improved substation instrument target detection method for YOLOv5 algorithm [J]. Journal of Graphics, 2023, 44(3): 448-455. |
[4] | HAO Peng-fei, LIU Li-qun, GU Ren-yuan. YOLO-RD-Apple orchard heterogenous image obscured fruit detection model [J]. Journal of Graphics, 2023, 44(3): 456-464. |
[5] | LUO Wen-yu, FU Ming-yue. On-site monitoring technology of illegal swimming and fishing based on YoloX-ECA [J]. Journal of Graphics, 2023, 44(3): 465-472. |
[6] | LI Yu, YAN Tian-tian, ZHOU Dong-sheng, WEI Xiao-peng. Natural scene text detection based on attention mechanism and deep multi-scale feature fusion [J]. Journal of Graphics, 2023, 44(3): 473-481. |
[7] | XIAO Tian-xing, WU Jing-jing. Segmentation of laser coding characters based on residual and feature-grouped attention [J]. Journal of Graphics, 2023, 44(3): 482-491. |
[8] | WANG Jia-jing, WANG Chen, ZHU Yuan-yuan, WANG Xiao-mei. Graph element detection matching based on Republic of China banknotes [J]. Journal of Graphics, 2023, 44(3): 492-501. |
[9] | SUN Long-fei, LIU Hui, YANG Feng-chang, LI Pan. Research on cyclic generative network oriented to inter-layer interpolation of medical images [J]. Journal of Graphics, 2023, 44(3): 502-512. |
[10] | LIU Bing, YE Cheng-xu. Fine-grained classification model of lung disease for imbalanced data [J]. Journal of Graphics, 2023, 44(3): 513-520. |
[11] | SHI Cai-juan, SHI Ze, YAN Jin-wei, BI Yang-yang. Bi-directionally aligned VAE based on double semantics for generalized zero-shot learning [J]. Journal of Graphics, 2023, 44(3): 521-530. |
[12] | WU Wen-huan, ZHANG Hao-kun. Semantic segmentation with fusion of spatial criss-cross and channel multi-head attention [J]. Journal of Graphics, 2023, 44(3): 531-539. |
[13] | GE Hai-ming, ZHANG Wei, WANG Xiao-long, ZHU Jing-jing, JIA Fei, XUE Ya-dong. Optimization of 3D reconstruction method for urban cable tunnel based on SfM method [J]. Journal of Graphics, 2023, 44(3): 540-550. |
[14] | YAN Yuan, GAO Xin-jian, GAO Jun, WANG Xin, CHENG Qian. A generative network based on non-local information for atmospheric polarization modelling [J]. Journal of Graphics, 2023, 44(3): 551-559. |
[15] | ZHAO Yu-kun, REN Shuang, ZHANG Xin-yun. A 3D point cloud defense framework combined with adversarial examples detection and reconstruction [J]. Journal of Graphics, 2023, 44(3): 560-569. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||