Journal of Graphics ›› 2024, Vol. 45 ›› Issue (1): 47-55.DOI: 10.11996/JG.j.2095-302X.2024010047
• Image Processing and Computer Vision • Previous Articles Next Articles
HU Xin1(), HU Shuai1, MA Lijun2, SI Liyun1(
), XIAO Jian3, YUAN Ye4
Received:
2023-08-26
Accepted:
2023-11-03
Online:
2024-02-29
Published:
2024-02-29
About author:
HU Xin (1975-), associate professor, Ph.D. Her main research interests cover energy management, computer vision and machine learning, etc. E-mail:huxin@chd.deu.cn
Supported by:
CLC Number:
HU Xin, HU Shuai, MA Lijun, SI Liyun, XIAO Jian, YUAN Ye. PCB defect detection method based on fusion of MBAM and YOLOv5[J]. Journal of Graphics, 2024, 45(1): 47-55.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024010047
算法 | 评价指标 | ||||||
---|---|---|---|---|---|---|---|
添加MBAM | mAP/% | AP50/% | AP75/% | APS/% | APM/% | FPS/(帧/秒) | |
YOLOv3 | × | 33.9 | 89.8 | 33.9 | 34.5 | 37.1 | 53.3 |
YOLOv4 | × | 46.5 | 93.4 | 36.1 | 45.5 | 50.0 | 75.8 |
RetinaNet | × | 46.5 | 95.2 | 45.7 | 46.3 | 51.4 | 35.2 |
Faster-RCNN | × | 50.1 | 95.6 | 46.3 | 48.7 | 53.2 | 34.1 |
YOLOv5 | × | 50.6 | 94.7 | 45.9 | 48.1 | 54.9 | 110.4 |
YOLOv3 | √ | 36.3 | 91.2 | 40.7 | 36.1 | 40.4 | 52.1 |
YOLOv4 | √ | 46.9 | 94.1 | 39.7 | 46.9 | 50.7 | 74.9 |
RetinaNet | √ | 48.2 | 96.0 | 46.6 | 48.3 | 51.9 | 34.6 |
Faster-RCNN | √ | 51.6 | 96.2 | 47.3 | 49.9 | 54.7 | 32.1 |
本文算法 | √ | 52.3 | 96.7 | 48.1 | 50.6 | 56.4 | 109.1 |
Table 1 Comparison of results of different algorithms
算法 | 评价指标 | ||||||
---|---|---|---|---|---|---|---|
添加MBAM | mAP/% | AP50/% | AP75/% | APS/% | APM/% | FPS/(帧/秒) | |
YOLOv3 | × | 33.9 | 89.8 | 33.9 | 34.5 | 37.1 | 53.3 |
YOLOv4 | × | 46.5 | 93.4 | 36.1 | 45.5 | 50.0 | 75.8 |
RetinaNet | × | 46.5 | 95.2 | 45.7 | 46.3 | 51.4 | 35.2 |
Faster-RCNN | × | 50.1 | 95.6 | 46.3 | 48.7 | 53.2 | 34.1 |
YOLOv5 | × | 50.6 | 94.7 | 45.9 | 48.1 | 54.9 | 110.4 |
YOLOv3 | √ | 36.3 | 91.2 | 40.7 | 36.1 | 40.4 | 52.1 |
YOLOv4 | √ | 46.9 | 94.1 | 39.7 | 46.9 | 50.7 | 74.9 |
RetinaNet | √ | 48.2 | 96.0 | 46.6 | 48.3 | 51.9 | 34.6 |
Faster-RCNN | √ | 51.6 | 96.2 | 47.3 | 49.9 | 54.7 | 32.1 |
本文算法 | √ | 52.3 | 96.7 | 48.1 | 50.6 | 56.4 | 109.1 |
方法 | 评价指标 | |||||
---|---|---|---|---|---|---|
mAP/ % | AP50/ % | AP75/ % | APS/ % | APM/ % | FPS/ (帧/秒) | |
YOLOX | 50.3 | 94.1 | 47.0 | 47.8 | 53.6 | 72.6 |
YOLOv6 | 51.2 | 94.9 | 48.1 | 48.2 | 54.2 | 81.4 |
YOLOv7 | 50.9 | 95.7 | 47.6 | 49.6 | 53.7 | 97.8 |
YOLOv8 | 52.0 | 96.2 | 50.2 | 49.1 | 55.6 | 112.6 |
本文算法 | 52.3 | 96.7 | 48.1 | 50.6 | 56.4 | 109.1 |
Table 2 Comparison of YOLO Series Algorithms
方法 | 评价指标 | |||||
---|---|---|---|---|---|---|
mAP/ % | AP50/ % | AP75/ % | APS/ % | APM/ % | FPS/ (帧/秒) | |
YOLOX | 50.3 | 94.1 | 47.0 | 47.8 | 53.6 | 72.6 |
YOLOv6 | 51.2 | 94.9 | 48.1 | 48.2 | 54.2 | 81.4 |
YOLOv7 | 50.9 | 95.7 | 47.6 | 49.6 | 53.7 | 97.8 |
YOLOv8 | 52.0 | 96.2 | 50.2 | 49.1 | 55.6 | 112.6 |
本文算法 | 52.3 | 96.7 | 48.1 | 50.6 | 56.4 | 109.1 |
方法 | 位置 | ||||
---|---|---|---|---|---|
MBAM | 第一个CSP_3 | 第二个CSP_3 | SPP | AP50/% | |
YOLOv5 | × | × | × | × | 94.7 |
YOLOv5 | √ | √ | × | × | 95.1 |
YOLOv5 | √ | √ | √ | × | 95.8 |
本文算法 | √ | √ | √ | √ | 96.7 |
Table 3 Results of MBAM modules added in different locations
方法 | 位置 | ||||
---|---|---|---|---|---|
MBAM | 第一个CSP_3 | 第二个CSP_3 | SPP | AP50/% | |
YOLOv5 | × | × | × | × | 94.7 |
YOLOv5 | √ | √ | × | × | 95.1 |
YOLOv5 | √ | √ | √ | × | 95.8 |
本文算法 | √ | √ | √ | √ | 96.7 |
方法 | 评价指标 | |||||
---|---|---|---|---|---|---|
mAP/% | AP50/% | AP75/% | APS/% | APM/% | FPS/(帧/秒) | |
YOLOv5 | 50.6 | 94.7 | 45.9 | 48.1 | 54.9 | 110.4 |
YOLOv5+SE | 51.0 | 94.9 | 46.6 | 47.4 | 55.6 | 83.2 |
YOLOv5+BAM | 51.6 | 94.9 | 45.8 | 48.9 | 55.5 | 79.3 |
YOLOv5+CBAM | 52.0 | 95.3 | 47.2 | 49.3 | 56.0 | 90.9 |
本文算法 | 52.3 | 96.7 | 48.1 | 50.6 | 56.4 | 109.1 |
Table 4 Comparison with other attention modules
方法 | 评价指标 | |||||
---|---|---|---|---|---|---|
mAP/% | AP50/% | AP75/% | APS/% | APM/% | FPS/(帧/秒) | |
YOLOv5 | 50.6 | 94.7 | 45.9 | 48.1 | 54.9 | 110.4 |
YOLOv5+SE | 51.0 | 94.9 | 46.6 | 47.4 | 55.6 | 83.2 |
YOLOv5+BAM | 51.6 | 94.9 | 45.8 | 48.9 | 55.5 | 79.3 |
YOLOv5+CBAM | 52.0 | 95.3 | 47.2 | 49.3 | 56.0 | 90.9 |
本文算法 | 52.3 | 96.7 | 48.1 | 50.6 | 56.4 | 109.1 |
Fig. 8 The feature visualization diagram of the algorithm in Neck layer in this paper ((a) Shallow feature map; (b) Middle layer feature map; (c) Deep feature map)
算法 | 类别 | |||||
---|---|---|---|---|---|---|
短路 | 开路 | 鼠咬 | 杂散 | 杂铜 | 漏孔 | |
YOLOv5 | 94.9 | 97.3 | 98.0 | 97.6 | 97.4 | 98.9 |
本文算法 | 95.7 | 98.1 | 98.1 | 97.7 | 98.6 | 98.9 |
Table 5 Comparison of AP50 results by category/%
算法 | 类别 | |||||
---|---|---|---|---|---|---|
短路 | 开路 | 鼠咬 | 杂散 | 杂铜 | 漏孔 | |
YOLOv5 | 94.9 | 97.3 | 98.0 | 97.6 | 97.4 | 98.9 |
本文算法 | 95.7 | 98.1 | 98.1 | 97.7 | 98.6 | 98.9 |
算法 | 类别 | |||||
---|---|---|---|---|---|---|
短路 | 开路 | 鼠咬 | 杂散 | 杂铜 | 漏孔 | |
YOLOv5 | 48.8 | 44.8 | 49.9 | 47.5 | 50.2 | 55.7 |
本文算法 | 50.6 | 46.5 | 51.4 | 48.9 | 52.6 | 56.7 |
Table 6 Comparison of mAP results by category/%
算法 | 类别 | |||||
---|---|---|---|---|---|---|
短路 | 开路 | 鼠咬 | 杂散 | 杂铜 | 漏孔 | |
YOLOv5 | 48.8 | 44.8 | 49.9 | 47.5 | 50.2 | 55.7 |
本文算法 | 50.6 | 46.5 | 51.4 | 48.9 | 52.6 | 56.7 |
[1] | 吴一全, 赵朗月, 苑玉彬, 等. 基于机器视觉的PCB缺陷检测算法研究现状及展望[J]. 仪器仪表学报, 2022, 43(8): 1-17. |
WU Y Q, ZHAO L Y, YUAN Y B, et al. Research status and the prospect of PCB defect detection algorithm based on machine vision[J]. Chinese Journal of Scientific Instrument, 2022, 43(8): 1-17 (in Chinese). | |
[2] | 卢荣胜, 吴昂, 张腾达, 等. 自动光学(视觉)检测技术及其在缺陷检测中的应用综述[J]. 光学学报, 2018, 38(8): 23-58. |
LU R S, WU A, ZHANG T D, et al. Review on automated optical (visual) inspection and its applications in defect detection[J]. Acta Optica Sinica, 2018, 38(8): 23-58 (in Chinese). | |
[3] | SANTOYO J, PEDRAZA J C, MEJÍA L F, et al. PCB inspection using image processing and wavelet transform[M]// MICAI 2007:Advances in Artificial Intelligence. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007: 634-639. |
[4] | PUTERA S H I, IBRAHIM Z. Printed circuit board defect detection using mathematical morphology and MATLAB image processing tools[C]// 2010 2nd International Conference on Education Technology and Computer. New York: IEEE Press, 2010: V5: 359-V5:363. |
[5] | MASHOHOR S, EVANS J R, ARSLAN T. Image registration of printed circuit boards using hybrid genetic algorithm[C]// 2006 IEEE International Conference on Evolutionary Computation. New York: IEEE Press, 2006: 2685-2690. |
[6] |
MAR N S S, YARLAGADDA P K D V, FOOKES C. Design and development of automatic visual inspection system for PCB manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2011, 27(5): 949-962.
DOI URL |
[7] | BAYGIN M, KARAKOSE M, SARIMADEN A, et al. Machine vision based defect detection approach using image processing[C]// 2017 International Artificial Intelligence and Data Processing Symposium. New York: IEEE Press, 2017: 1-5. |
[8] | 陈世哲. 微电子产品视觉检测中关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2006. |
CHEN S Z. Research on the key techniques of microelectronic products vision inspection[D]. Harbin: Harbin Institute of Technology, 2006 (in Chinese). | |
[9] | 李庆, 张丰, 李芬, 等. 一种用于AOI的PCB拼接算法[J]. 华中科技大学学报: 自然科学版, 2011, 39(2): 90-93. |
LI Q, ZHANG F, LI F, et al. A PCB image mosaic algorithm for AOI system[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2011, 39(2): 90-93 (in Chinese). | |
[10] | 宋昀岑. PCB自动光学检测系统基础算法研究[D]. 成都: 电子科技大学, 2014. |
SONG Y C. The study on low-level vision algorithms used in PCB automatic optical inspection systems[D]. Chengdu: University of Electronic Science and Technology of China, 2014 (in Chinese). | |
[11] |
ZHANG F, QIAO N S, LI J F. A PCB photoelectric image edge information detection method[J]. Optik, 2017, 144: 642-646.
DOI URL |
[12] | GUAN S, GUO F L. A new image enhancement algorithm for PCB defect detection[C]// 2011 International Conference on Intelligence Science and Information Engineering. New York: IEEE Press, 2011: 454-456. |
[13] | 姚忠伟. 基于机器视觉的PCB缺陷检测算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. |
YAO Z W. Automatic optical inspection on printed circuit board[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese). | |
[14] |
PARK J Y, HWANG Y, LEE D, et al. MarsNet: multi-label classification network for images of various sizes[J]. IEEE Access, 2020, 8: 21832-21846.
DOI URL |
[15] |
PARK J M, YOO Y H, KIM U H, et al. D3PointNet: dual-level defect detection PointNet for solder paste printer in surface mount technology[J]. IEEE Access, 2020, 8: 140310-140322.
DOI URL |
[16] | HUANG W B, WEI P. A PCB dataset for defects detection and classification[EB/OL]. [2023-08-01]. https://arxiv.org/abs/1901.08204.pdf. |
[17] | 唐三立. 基于高分辨率图像在线PCB缺陷检测关键技术研究[D]. 上海: 上海交通大学, 2019. |
TANG S L. Study on the key technique of PCB defect detection based on high-resolution images[D]. Shanghai: Shanghai Jiao Tong University, 2019 (in Chinese). | |
[18] | 杨杰, 张书杰. 基于密集YOLOv3的印刷电路板缺陷识别[J]. 北京邮电大学学报, 2022, 45(5): 42-48. |
YANG J, ZHANG S J. Defect recognition of printed circuit board based on YOLOv3-dense[J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(5): 42-48 (in Chinese). | |
[19] | 马德鑫. 基于深度学习的PCB缺陷检测方法研究[D]. 长沙: 湖南大学, 2021. |
MA D X. Research on PCB defect detection method based on deep learning[D]. Changsha: Hunan University, 2021 (in Chinese). | |
[20] | 钱万明, 朱红萍, 朱泓知, 等. 基于自适应加权特征融合的PCB裸板缺陷检测研究[J]. 电子测量与仪器学报, 2022, 36(10): 92-99. |
QIAN W M, ZHU H P, ZHU H Z, et al. Research on defect detection of PCB bare board basedon adaptive weighted feature fusion[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(10): 92-99 (in Chinese). | |
[21] | 颛孙壮志. 基于图像处理的PCB裸板表面缺陷检测系统[D]. 成都: 电子科技大学, 2022. |
ZHUANSUN Z Z. PCB bare board surface defect detection system based on image processing[D]. Chengdu: University of Electronic Science and Technology of China, 2022 (in Chinese). | |
[22] |
HU B, WANG J H. Detection of PCB surface defects with improved faster-RCNN and feature pyramid network[J]. IEEE Access, 2020, 8: 108335-108345.
DOI URL |
[23] | 何止戈. 基于深度学习方法的PCB图像缺陷检测[D]. 成都: 电子科技大学, 2020. |
HE Z G. Defect of PCB image detection based on deep learning method[D]. Chengdu: University of Electronic Science and Technology of China, 2020 (in Chinese). | |
[24] | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2023-08-01]. https://arxiv.org/abs/2004.10934.pdf. |
[25] | CHEN K, WANG J Q, PANG J M, et al. MMDetection: open MMLab detection toolbox and benchmark[EB/OL]. [2023- 08-01]. https://arxiv.org/abs/1906.07155.pdf. |
[1] | NIU Weihua, GUO Xun. Rotating target detection algorithm in ship remote sensing images based on YOLOv8 [J]. Journal of Graphics, 2024, 45(4): 726-735. |
[2] | ZHAO Lei, LI Dong, FANG Jiandong, CAO Qi. Improved YOLO object detection algorithm for traffic signs [J]. Journal of Graphics, 2024, 45(4): 779-790. |
[3] | LI Yuehua, ZHONG Xin, YAO Zhangyan, HU Bin. Detection of dress code violations based on improved YOLOv5s [J]. Journal of Graphics, 2024, 45(3): 433-445. |
[4] | ZHANG Xiangsheng, YANG Xiao. Defect detection method of rubber seal ring based on improved YOLOv7-tiny [J]. Journal of Graphics, 2024, 45(3): 446-453. |
[5] | WANG Da-fu, WANG Jing, SHI Yu-kai, DENG Zhi-wen, JIA Zhi-yong. Research on image privacy detection based on deep transfer learning [J]. Journal of Graphics, 2023, 44(6): 1112-1120. |
[6] | LI Li-xia, WANG Xin, WANG Jun, ZHANG You-yuan. Small object detection algorithm in UAV image based on feature fusion and attention mechanism [J]. Journal of Graphics, 2023, 44(4): 658-666. |
[7] | HAO Shuai, ZHAO Xin-sheng, MA Xu, ZHANG Xu, HE Tian, HOU Li-xiang. Multi-class defect target detection method for transmission lines based on TR-YOLOv5 [J]. Journal of Graphics, 2023, 44(4): 667-676. |
[8] | HU Xin, ZHOU Yun-qiang, XIAO Jian, YANG Jie. Surface defect detection of threaded steel based on improved YOLOv5 [J]. Journal of Graphics, 2023, 44(3): 427-437. |
[9] | MAO Ai-kun, LIU Xin-ming, CHEN Wen-zhuang, SONG Shao-lou. Improved substation instrument target detection method for YOLOv5 algorithm [J]. Journal of Graphics, 2023, 44(3): 448-455. |
[10] | HAO Peng-fei, LIU Li-qun, GU Ren-yuan. YOLO-RD-Apple orchard heterogenous image obscured fruit detection model [J]. Journal of Graphics, 2023, 44(3): 456-464. |
[11] | CHEN Gang, ZHANG Pei-ji, GONG Dong-dong, YU Jun-qing. Research on safety clothing detection method for surveillance video of thermal power plant [J]. Journal of Graphics, 2023, 44(2): 291-297. |
[12] | CHENG Lang, JING Chao. X-ray image rotating object detection based on improved YOLOv7 [J]. Journal of Graphics, 2023, 44(2): 324-334. |
[13] | CAO Yi-qin, WU Ming-lin, XU Lu. Steel surface defect detection based on improved YOLOv5 algorithm [J]. Journal of Graphics, 2023, 44(2): 335-345. |
[14] | ZHANG Wei-kang, SUN Hao, CHEN Xin-kai, LI Xu-bing, YAO Li-gang, DONG Hui. Research on weed detection in vegetable seedling fields based on the improved YOLOv5 intelligent weeding robot [J]. Journal of Graphics, 2023, 44(2): 346-356. |
[15] | LI Xiao-bo, LI Yang-gui, GUO Ning, FAN Zhen. Mask detection algorithm based on YOLOv5 integrating attention mechanism [J]. Journal of Graphics, 2023, 44(1): 16-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||