Journal of Graphics ›› 2024, Vol. 45 ›› Issue (3): 454-463.DOI: 10.11996/JG.j.2095-302X.2024030454
Previous Articles Next Articles
Received:
2023-12-25
Accepted:
2024-02-06
Online:
2024-06-30
Published:
2024-06-06
About author:
LI Tao (1983-), associate professor, Ph.D. Her main research interests cover image/video compression and restoration, image super-resolution reconstruction, and deep image completion. E-mail:litao@mail.xhu.edu.cn
Supported by:
CLC Number:
LI Tao, HU Ting, WU Dandan. Monocular depth estimation combining pyramid structure and attention mechanism[J]. Journal of Graphics, 2024, 45(3): 454-463.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024030454
方法 | RMSE↓ | AbsRel↓ | Log10↓ | |||
---|---|---|---|---|---|---|
文献[ | 0.641 | 0.158 | - | 0.769 | 0.950 | 0.988 |
文献[ | 0.562 | - | 0.064 | 0.800 | 0.952 | 0.988 |
文献[ | 0.514 | 0.110 | 0.048 | 0.878 | 0.977 | 0.994 |
文献[ | 0.495 | 0.139 | 0.047 | 0.888 | 0.978 | 0.995 |
文献[ | 0.470 | 0.109 | - | 0.859 | 0.973 | 0.995 |
文献[ | 0.416 | 0.108 | 0.048 | 0.875 | 0.976 | 0.994 |
文献[ | 0.398 | 0.108 | 0.047 | 0.884 | 0.979 | - |
文献[ | 0.398 | 0.116 | 0.048 | 0.875 | 0.980 | 0.995 |
文献[ | 0.392 | 0.110 | 0.047 | 0.885 | 0.978 | 0.994 |
文献[ | 0.384 | 0.105 | 0.045 | 0.895 | 0.983 | 0.996 |
文献[ | 0.374 | 0.103 | 0.044 | 0.902 | 0.985 | 0.997 |
文献[ | 0.373 | 0.107 | 0.046 | 0.893 | 0.985 | 0.997 |
文献[ | 0.365 | 0.106 | 0.045 | 0.900 | 0.983 | 0.996 |
文献[ | 0.364 | 0.103 | 0.044 | 0.903 | 0.984 | 0.997 |
文献[ | 0.357 | 0.110 | 0.045 | 0.904 | 0.988 | 0.998 |
文献[ | 0.356 | 0.104 | 0.043 | 0.898 | 0.981 | 0.996 |
本文方法 | 0.346 | 0.098 | 0.042 | 0.909 | 0.988 | 0.998 |
Table 1 Comparison of quantitative results of different methods on NYU Depth V2 dataset
方法 | RMSE↓ | AbsRel↓ | Log10↓ | |||
---|---|---|---|---|---|---|
文献[ | 0.641 | 0.158 | - | 0.769 | 0.950 | 0.988 |
文献[ | 0.562 | - | 0.064 | 0.800 | 0.952 | 0.988 |
文献[ | 0.514 | 0.110 | 0.048 | 0.878 | 0.977 | 0.994 |
文献[ | 0.495 | 0.139 | 0.047 | 0.888 | 0.978 | 0.995 |
文献[ | 0.470 | 0.109 | - | 0.859 | 0.973 | 0.995 |
文献[ | 0.416 | 0.108 | 0.048 | 0.875 | 0.976 | 0.994 |
文献[ | 0.398 | 0.108 | 0.047 | 0.884 | 0.979 | - |
文献[ | 0.398 | 0.116 | 0.048 | 0.875 | 0.980 | 0.995 |
文献[ | 0.392 | 0.110 | 0.047 | 0.885 | 0.978 | 0.994 |
文献[ | 0.384 | 0.105 | 0.045 | 0.895 | 0.983 | 0.996 |
文献[ | 0.374 | 0.103 | 0.044 | 0.902 | 0.985 | 0.997 |
文献[ | 0.373 | 0.107 | 0.046 | 0.893 | 0.985 | 0.997 |
文献[ | 0.365 | 0.106 | 0.045 | 0.900 | 0.983 | 0.996 |
文献[ | 0.364 | 0.103 | 0.044 | 0.903 | 0.984 | 0.997 |
文献[ | 0.357 | 0.110 | 0.045 | 0.904 | 0.988 | 0.998 |
文献[ | 0.356 | 0.104 | 0.043 | 0.898 | 0.981 | 0.996 |
本文方法 | 0.346 | 0.098 | 0.042 | 0.909 | 0.988 | 0.998 |
方法 | RMSE↓ | RMSElog↓ | AbsRel↓ | |||
---|---|---|---|---|---|---|
文献[ | 4.387 | 0.184 | 0.097 | 0.891 | 0.962 | 0.982 |
文献[ | 4.251 | 0.174 | 0.117 | 0.895 | 0.972 | 0.985 |
文献[ | 3.933 | 0.173 | 0.098 | 0.890 | 0.964 | 0.985 |
文献[ | 3.802 | 0.151 | 0.090 | 0.902 | 0.972 | 0.990 |
文献[ | 3.325 | 0.116 | 0.074 | 0.933 | 0.989 | 0.997 |
文献[ | 3.258 | 0.117 | 0.072 | 0.938 | 0.990 | 0.998 |
文献[ | 3.248 | 0.143 | 0.092 | 0.902 | 0.978 | 0.994 |
文献[ | 3.076 | 0.120 | 0.082 | 0.926 | 0.986 | 0.997 |
文献[ | 2.842 | 0.103 | 0.071 | 0.953 | 0.993 | 0.998 |
本文方法 | 2.831 | 0.099 | 0.065 | 0.955 | 0.993 | 0.999 |
Table 2 Comparison of quantitative results of different methods on KITTI dataset
方法 | RMSE↓ | RMSElog↓ | AbsRel↓ | |||
---|---|---|---|---|---|---|
文献[ | 4.387 | 0.184 | 0.097 | 0.891 | 0.962 | 0.982 |
文献[ | 4.251 | 0.174 | 0.117 | 0.895 | 0.972 | 0.985 |
文献[ | 3.933 | 0.173 | 0.098 | 0.890 | 0.964 | 0.985 |
文献[ | 3.802 | 0.151 | 0.090 | 0.902 | 0.972 | 0.990 |
文献[ | 3.325 | 0.116 | 0.074 | 0.933 | 0.989 | 0.997 |
文献[ | 3.258 | 0.117 | 0.072 | 0.938 | 0.990 | 0.998 |
文献[ | 3.248 | 0.143 | 0.092 | 0.902 | 0.978 | 0.994 |
文献[ | 3.076 | 0.120 | 0.082 | 0.926 | 0.986 | 0.997 |
文献[ | 2.842 | 0.103 | 0.071 | 0.953 | 0.993 | 0.998 |
本文方法 | 2.831 | 0.099 | 0.065 | 0.955 | 0.993 | 0.999 |
方法 | SIlog↓ | SqRel↓ | AbsRel↓ | iRMSE↓ |
---|---|---|---|---|
文献[ | 15.18 | 3.79 | 12.33 | 17.86 |
文献[ | 14.68 | 3.90 | 12.31 | 15.96 |
文献[ | 14.67 | 3.12 | 12.42 | 16.84 |
文献[ | 13.53 | 3.06 | 10.35 | 15.96 |
文献[ | 13.08 | 2.72 | 10.27 | 13.95 |
文献[ | 13.00 | 2.95 | 10.38 | 13.78 |
文献[ | 12.86 | 2.87 | 10.03 | 14.40 |
文献[ | 12.83 | 3.62 | 11.01 | 13.43 |
文献[ | 12.82 | 2.53 | 9.92 | 13.71 |
本文方法 | 12.45 | 2.68 | 9.92 | 13.26 |
Table 3 Comparison of quantitative results of different methods on KITTI DP benchmark public test dataset
方法 | SIlog↓ | SqRel↓ | AbsRel↓ | iRMSE↓ |
---|---|---|---|---|
文献[ | 15.18 | 3.79 | 12.33 | 17.86 |
文献[ | 14.68 | 3.90 | 12.31 | 15.96 |
文献[ | 14.67 | 3.12 | 12.42 | 16.84 |
文献[ | 13.53 | 3.06 | 10.35 | 15.96 |
文献[ | 13.08 | 2.72 | 10.27 | 13.95 |
文献[ | 13.00 | 2.95 | 10.38 | 13.78 |
文献[ | 12.86 | 2.87 | 10.03 | 14.40 |
文献[ | 12.83 | 3.62 | 11.01 | 13.43 |
文献[ | 12.82 | 2.53 | 9.92 | 13.71 |
本文方法 | 12.45 | 2.68 | 9.92 | 13.26 |
Fig. 4 Comparison of qualitative results of different methods on the NYU Depth V2 dataset ((a) Input image; (b) Ground depth; (c) BTS; (d) LapDepth; (e) ASTransformer; (f) Ours)
Fig. 5 Comparison of qualitative results of different methods on the KITTI DP benchmark public test dataset ((a) Input image; (b) VNL; (c) P3Depth; (d) Ours)
Fig. 6 Comparison of qualitative results of our method, BTS, PWA, and NeWCRFs on the KITTI DP benchmark public test dataset ((a) Input image; (b) BTS; (c) PWA; (d) NeWCRFs; (e) Ours)
对比方法 | 参数量/M | FLOPs/G |
---|---|---|
文献[ | 47.001 | 244.652 |
文献[ | 58.018 | 134.285 |
文献[ | 84.419 | 850.502 |
文献[ | 95.728 | 219.423 |
本文方法 | 91.308 | 254.758 |
Table 4 Comparison of complexity of different methods on NYU Depth V2 dataset
对比方法 | 参数量/M | FLOPs/G |
---|---|---|
文献[ | 47.001 | 244.652 |
文献[ | 58.018 | 134.285 |
文献[ | 84.419 | 850.502 |
文献[ | 95.728 | 219.423 |
本文方法 | 91.308 | 254.758 |
对比方法 | 骨干网络 | RMSE↓ | AbsRel↓ | log10↓ | 参数量/M | |||
---|---|---|---|---|---|---|---|---|
Base | PVTv2-b5 | 0.355 | 0.104 | 0.044 | 0.904 | 0.987 | 0.998 | 88.26 |
Base+Lap | 0.354 | 0.104 | 0.043 | 0.906 | 0.986 | 0.998 | 88.37 | |
Base+DAFM | 0.353 | 0.106 | 0.044 | 0.898 | 0.986 | 0.997 | 88.75 | |
Base+DRM | 0.349 | 0.101 | 0.043 | 0.908 | 0.988 | 0.998 | 91.17 | |
Base+Lap+DAFM | 0.351 | 0.102 | 0.043 | 0.905 | 0.987 | 0.997 | 88.87 | |
Base+Lap+DRM | 0.350 | 0.102 | 0.043 | 0.907 | 0.987 | 0.998 | 91.29 | |
Base+DAFM+DRM | 0.348 | 0.100 | 0.042 | 0.907 | 0.987 | 0.997 | 91.67 | |
Base+Lap+DAFM+DRM | 0.346 | 0.098 | 0.042 | 0.909 | 0.988 | 0.998 | 91.82 |
Table 5 Ablation experimental results of different modules on the NYU Depth V2 dataset
对比方法 | 骨干网络 | RMSE↓ | AbsRel↓ | log10↓ | 参数量/M | |||
---|---|---|---|---|---|---|---|---|
Base | PVTv2-b5 | 0.355 | 0.104 | 0.044 | 0.904 | 0.987 | 0.998 | 88.26 |
Base+Lap | 0.354 | 0.104 | 0.043 | 0.906 | 0.986 | 0.998 | 88.37 | |
Base+DAFM | 0.353 | 0.106 | 0.044 | 0.898 | 0.986 | 0.997 | 88.75 | |
Base+DRM | 0.349 | 0.101 | 0.043 | 0.908 | 0.988 | 0.998 | 91.17 | |
Base+Lap+DAFM | 0.351 | 0.102 | 0.043 | 0.905 | 0.987 | 0.997 | 88.87 | |
Base+Lap+DRM | 0.350 | 0.102 | 0.043 | 0.907 | 0.987 | 0.998 | 91.29 | |
Base+DAFM+DRM | 0.348 | 0.100 | 0.042 | 0.907 | 0.987 | 0.997 | 91.67 | |
Base+Lap+DAFM+DRM | 0.346 | 0.098 | 0.042 | 0.909 | 0.988 | 0.998 | 91.82 |
对比方法 | RMSE↓ | AbsRel↓ | log10↓ | |||
---|---|---|---|---|---|---|
Lap0 | 0.349 | 0.101 | 0.043 | 0.910 | 0.988 | 0.997 |
Lap3 | 0.348 | 0.101 | 0.043 | 0.907 | 0.986 | 0.997 |
Lap4_0 | 0.352 | 0.099 | 0.042 | 0.909 | 0.987 | 0.997 |
Lap4_1 | 0.346 | 0.098 | 0.042 | 0.909 | 0.988 | 0.998 |
Lap5 | 0.349 | 0.099 | 0.042 | 0.912 | 0.987 | 0.998 |
Lap6 | 0.349 | 0.100 | 0.042 | 0.906 | 0.986 | 0.997 |
Table 6 Comparison of results of the impact of different Laplace pyramid structures on performance
对比方法 | RMSE↓ | AbsRel↓ | log10↓ | |||
---|---|---|---|---|---|---|
Lap0 | 0.349 | 0.101 | 0.043 | 0.910 | 0.988 | 0.997 |
Lap3 | 0.348 | 0.101 | 0.043 | 0.907 | 0.986 | 0.997 |
Lap4_0 | 0.352 | 0.099 | 0.042 | 0.909 | 0.987 | 0.997 |
Lap4_1 | 0.346 | 0.098 | 0.042 | 0.909 | 0.988 | 0.998 |
Lap5 | 0.349 | 0.099 | 0.042 | 0.912 | 0.987 | 0.998 |
Lap6 | 0.349 | 0.100 | 0.042 | 0.906 | 0.986 | 0.997 |
[1] | SAXENA A, CHUNG S H, NG A Y. Learning depth from single monocular images[C]// The 18th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2005: 1161-1168. |
[2] |
CHOI S, MIN D B, HAM B, et al. Depth analogy: data-driven approach for single image depth estimation using gradient samples[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5953-5966.
DOI PMID |
[3] | EIGEN D, PUHRSCH C, FERGUS R. Depth map prediction from a single image using a multi-scale deep network[C]// The 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 2366-2374. |
[4] | SONG M, LIM S, KIM W. Monocular depth estimation using Laplacian pyramid-based depth residuals[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(11): 4381-4393. |
[5] | LEE J H, HAN M K, KO D W, et al. From big to small: multi-scale local planar guidance for monocular depth estimation[EB/OL]. [2023-06-20]. ttps://arxiv.org/abs/1907.10326.pdf. |
[6] | PATIL V, SAKARIDIS C, LINIGER A, et al. P3Depth: monocular depth estimation with a piecewise planarity prior[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 1600-1611. |
[7] | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. [2023-06-20]. http://arxiv.org/abs/2010.11929.pdf. |
[8] | RANFTL R, BOCHKOVSKIY A, KOLTUN V. Vision transformers for dense prediction[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 12159-12168. |
[9] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 770-778. |
[10] | YANG G L, TANG H, DING M L, et al. Transformer-based attention networks for continuous pixel-wise prediction[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 16249-16259. |
[11] | WANG W H, XIE E Z, LI X, et al. PVT v2: improved baselines with pyramid vision transformer[J]. Computational Visual Media, 2022, 8(3): 415-424. |
[12] | SILBERMAN N, HOIEM D, KOHLI P, et al. Indoor segmentation and support inference from RGBD images[EB/OL]. [2023-06-20]. https://www.doc88.com/p-05429309382760.html?id=7&s=rel. |
[13] | GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset[J]. International Journal of Robotics Research, 2013, 32(11): 1231-1237. |
[14] | RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. |
[15] | 谢昭, 马海龙, 吴克伟, 等. 基于采样汇集网络的场景深度估计[J]. 自动化学报, 2020, 46(3): 600-612. |
XIE Z, MA H L, WU K W, et al. Sampling aggregate network for scene depth estimation[J]. Acta Automatica Sinica, 2020, 46(3): 600-612 (in Chinese). | |
[16] | CHEN X T, CHEN X J, ZHA Z J. Structure-aware residual pyramid network for monocular depth estimation[C]// The 28th International Joint Conference on Artificial Intelligence. New York: ACM, 2019: 694-700. |
[17] | RAMAMONJISOA M, LEPETIT V. SharpNet: fast and accurate recovery of occluding contours in monocular depth estimation[C]// 2019 IEEE/CVF International Conference on Computer Vision Workshop. New York: IEEE Press, 2019: 2109-2118. |
[18] | MENG X Y, FAN C X, MING Y, et al. CORNet: context-based ordinal regression network for monocular depth estimation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(7): 4841-4853. |
[19] | YIN W, LIU Y F, SHEN C H. Virtual normal: enforcing geometric constraints for accurate and robust depth prediction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(10): 7282-7295. |
[20] | XU X F, CHEN Z, YIN F L. Monocular depth estimation with multi-scale feature fusion[J]. IEEE Signal Processing Letters, 2021, 28: 678-682. |
[21] | MANIMARAN G, SWAMINATHAN J. Focal-WNet: an architecture unifying convolution and attention for depth estimation[C]// 2022 IEEE 7th International conference for Convergence in Technology. New York: IEEE Press, 2022: 1-7. |
[22] | Chang W Y, Zhang Y Y, Xiong Z W. Transformer-based monocular depth estimation with attention supervision[EB/OL]. [2024-04-09]. https://api.semanticscholar.org/CorpusID:2490 11083. |
[23] | LEE M, HWANG S, PARK C, et al. EdgeConv with attention module for monocular depth estimation[C]// 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. New York: IEEE Press, 2022: 2364-2373. |
[24] | FAROOQ BHAT S, ALHASHIM I, WONKA P. AdaBins: depth estimation using adaptive bins[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 4008-4017. |
[25] | RAMAMONJISOA M, FIRMAN M, WATSON J, et al. Single image depth prediction with wavelet decomposition[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 11084-11093. |
[26] | SU W, ZHANG H F, SU Y, et al. Monocular depth estimation with spatially coherent sliced network[J]. Image and Vision Computing, 2022, 124: 104487. |
[27] | GAN Y K, XU X Y, SUN W X, et al. Monocular depth estimation with affinity, vertical pooling, and label enhancement[C]// Computer Vision-ECCV 2018: 15th European Conference. Cham: Springer, 2018: 232-247. |
[28] | ALI U, BAYRAMLI B, ALSARHAN T, et al. A lightweight network for monocular depth estimation with decoupled body and edge supervision[J]. Image and Vision Computing, 2021, 113: 104261. |
[29] | WU J P, JI R R, WANG Q, et al. Fast monocular depth estimation via side prediction aggregation with continuous spatial refinement[J]. IEEE Transactions on Multimedia, 2023, 25: 1204-1216. |
[30] | JIANG H L, HUANG R. Hierarchical binary classification for monocular depth estimation[EB/OL]. [2023-07-09]. https://ieeexplore.ieee.org/abstract/document/8961430. |
[31] | OCHS M, KRETZ A, MESTER R. SDNet: semantically guided depth estimation network[C]// German Conference on Pattern Recognition. Cham: Springer, 2019: 288-302. |
[32] | FU H, GONG M M, WANG C H, et al. Deep ordinal regression network for monocular depth estimation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 2002-2011. |
[33] | ZHANG Z Y, CUI Z, XU C Y, et al. Pattern-affinitive propagation across depth, surface normal and semantic segmentation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 4101-4110. |
[34] | DÍAZ R, MARATHE A. Soft labels for ordinal regression[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 4733-4742. |
[35] | REN H Y, EL-KHAMY M, LEE J. Deep robust single image depth estimation neural network using scene understanding[EB/OL]. [2023-04-12]. http://arxiv.org/abs/1906.03279.pdf. |
[36] | LEE S, LEE J, KIM B, et al. Patch-wise attention network for monocular depth estimation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(3): 1873-1881. |
[37] | YUAN W H, GU X D, DAI Z Z, et al. Neural window fully-connected CRFs for monocular depth estimation[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 3906-3915. |
[1] | LI Daxiang, JI Zhan, LIU Ying, TANG Yao. Improving YOLOv7 remote sensing image target detection algorithm [J]. Journal of Graphics, 2024, 45(4): 650-658. |
[2] | LUO Zhihui, HU Haitao, MA Xiaofeng, CHENG Wengang. A network based on the homogeneous middle modality for cross-modality person re-identification [J]. Journal of Graphics, 2024, 45(4): 670-682. |
[3] | WEI Min, YAO Xin. Two-stage storm entity prediction based on multiscale and attention [J]. Journal of Graphics, 2024, 45(4): 696-704. |
[4] | HU Xin, CHANG Yashu, QIN Hao, XIAO Jian, CHENG Hongliang. Binocular ranging method based on improved YOLOv8 and GMM image point set matching [J]. Journal of Graphics, 2024, 45(4): 714-725. |
[5] | NIU Weihua, GUO Xun. Rotating target detection algorithm in ship remote sensing images based on YOLOv8 [J]. Journal of Graphics, 2024, 45(4): 726-735. |
[6] | ZENG Zhichao, XU Yue, WANG Jingyu, YE Yuanlong, HUANG Zhikai, WANG Huan. A water surface target detection algorithm based on SOE-YOLO lightweight network [J]. Journal of Graphics, 2024, 45(4): 736-744. |
[7] | WU Bing, TIAN Ying. Research on multi-scale road damage detection algorithm based on attention mechanism [J]. Journal of Graphics, 2024, 45(4): 770-778. |
[8] | ZHAO Lei, LI Dong, FANG Jiandong, CAO Qi. Improved YOLO object detection algorithm for traffic signs [J]. Journal of Graphics, 2024, 45(4): 779-790. |
[9] | LI Yuehua, ZHONG Xin, YAO Zhangyan, HU Bin. Detection of dress code violations based on improved YOLOv5s [J]. Journal of Graphics, 2024, 45(3): 433-445. |
[10] | ZHANG Xiangsheng, YANG Xiao. Defect detection method of rubber seal ring based on improved YOLOv7-tiny [J]. Journal of Graphics, 2024, 45(3): 446-453. |
[11] | ZHU Guanghui, MIAO Jun, HU Hongli, SHEN Ji, DU Ronghua. 3D piece-wise planar reconstruction from a single indoor image based on self-augmented -attention mechanism [J]. Journal of Graphics, 2024, 45(3): 464-471. |
[12] | HUANG Youwen, LIN Zhiqin, ZHANG Jin, CHEN Junkuan. Lightweight human pose estimation algorithm combined with coordinate Transformer [J]. Journal of Graphics, 2024, 45(3): 516-527. |
[13] | SHI Min, ZHUO Xinru, SUN Bilian, HAN Guoqing, ZHU Dengming. Unsupervised clothing animation prediction for different styles [J]. Journal of Graphics, 2024, 45(3): 539-547. |
[14] | LU Longfei, WANG Junfeng, ZHAO Shiwen, LI Guang, DING Xintao. Peg-in-hole compliant assembly method based on skill learning of force-position perception [J]. Journal of Graphics, 2024, 45(2): 250-258. |
[15] | WANG Zhiru, CHANG Yuan, LU Peng, PAN Chengwei. A review on neural radiance fields acceleration [J]. Journal of Graphics, 2024, 45(1): 1-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||