图学学报 ›› 2025, Vol. 46 ›› Issue (3): 532-541.DOI: 10.11996/JG.j.2095-302X.2025030532
牛杭(), 葛鑫雨, 赵晓瑜, 杨珂, 王乾铭(
), 翟永杰
收稿日期:
2024-09-10
接受日期:
2024-10-28
出版日期:
2025-06-30
发布日期:
2025-06-13
通讯作者:
王乾铭(1995-),男,讲师,博士。主要研究方向为电力视觉、深度学习以及故障诊断。E-mail:qianmingwang@ncepu.edu.cn第一作者:
牛杭(1991-),男,讲师,博士。主要研究方向为智能检测、诊断与控制。E-mail:hangniu@ncepu.edu.cn
基金资助:
NIU Hang(), GE Xinyu, ZHAO Xiaoyu, YANG Ke, WANG Qianming(
), ZHAI Yongjie
Received:
2024-09-10
Accepted:
2024-10-28
Published:
2025-06-30
Online:
2025-06-13
Contact:
WANG Qianming (1995-), lecturer, Ph.D. His main research interests cover power vision, deep learning and fault diagnosis. E-mail:qianmingwang@ncepu.edu.cnFirst author:
NIU Hang (1991-), lecturer, Ph.D. His main research interests cover intelligent detection, diagnosis and control. E-mail:hangniu@ncepu.edu.cn
Supported by:
摘要:
利用无人机对输电线路进行巡检的过程中,航拍的防振锤图像目标尺度多变且背景复杂,容易导致漏检、误检。为此,针对现有目标检测算法在复杂背景和多尺度目标检测方面的局限性,提出了一种基于改进YOLOv8的防振锤缺陷目标检测算法。首先,提出多尺度特征提取(MSFE)模块,有效扩大模型的感受野,增强模型的多尺度特征提取能力;其次,设计空间金字塔核注意力(SPKA)模块,提升模型对目标的全局感知能力,在多尺度特征融合过程中抑制复杂背景的干扰;最后,由于小尺度目标在图像中易被忽略,在网络中增加丰富小目标语义信息的特征层(STSIL),提高小目标缺陷检测能力。对比实验中,改进算法与基线模型YOLOv8s相比mAP50提升了5.7%,防振锤正常、倾斜、掉落的AP50分别提升了3.4%,4.5%和9.2%,证明了改进算法对防振锤缺陷检测的有效性与先进性,且其应用将有助于保障电力系统的安全可靠运行。
中图分类号:
牛杭, 葛鑫雨, 赵晓瑜, 杨珂, 王乾铭, 翟永杰. 基于改进YOLOv8的防振锤缺陷目标检测算法[J]. 图学学报, 2025, 46(3): 532-541.
NIU Hang, GE Xinyu, ZHAO Xiaoyu, YANG Ke, WANG Qianming, ZHAI Yongjie. Vibration damper defect detection algorithm based on improved YOLOv8[J]. Journal of Graphics, 2025, 46(3): 532-541.
检测算法 | AP50 | mAP50 | mAP50:95 | ||
---|---|---|---|---|---|
正常 | 倾斜 | 掉落 | |||
TPH-YOLOv5 | 68.9 | 55.3 | 70.0 | 64.7 | 37.0 |
GBH-YOLOv5 | 69.0 | 56.7 | 66.4 | 64.0 | 35.5 |
YOLOv6s | 65.1 | 56.5 | 71.3 | 64.3 | 35.9 |
YOlOv7-tiny | 66.6 | 53.3 | 77.3 | 65.7 | 36.0 |
YOLOv8s | 69.3 | 55.3 | 69.8 | 64.8 | 37.2 |
YOLOv10s | 68.1 | 51.7 | 71.3 | 63.7 | 34.7 |
YOLO11s | 67.5 | 52.8 | 67.7 | 62.6 | 34.8 |
Ours | 72.7 | 59.8 | 79.0 | 70.5 | 39.1 |
表1 不同算法性能比较/%
Table 1 Performance comparison of different algorithms/%
检测算法 | AP50 | mAP50 | mAP50:95 | ||
---|---|---|---|---|---|
正常 | 倾斜 | 掉落 | |||
TPH-YOLOv5 | 68.9 | 55.3 | 70.0 | 64.7 | 37.0 |
GBH-YOLOv5 | 69.0 | 56.7 | 66.4 | 64.0 | 35.5 |
YOLOv6s | 65.1 | 56.5 | 71.3 | 64.3 | 35.9 |
YOlOv7-tiny | 66.6 | 53.3 | 77.3 | 65.7 | 36.0 |
YOLOv8s | 69.3 | 55.3 | 69.8 | 64.8 | 37.2 |
YOLOv10s | 68.1 | 51.7 | 71.3 | 63.7 | 34.7 |
YOLO11s | 67.5 | 52.8 | 67.7 | 62.6 | 34.8 |
Ours | 72.7 | 59.8 | 79.0 | 70.5 | 39.1 |
图6 可视化对比结果((a)多尺度目标场景;(b)小尺度目标场景;(c)复杂背景目标场景)
Fig. 6 Visualization results comparison ((a) Multi-Scale target scene; (b) Small-Scale target scene; (c) Complex background target scene)
实验 | MSFE | SPKA | STSIL | AP50:95/% | mAP50/% | mAP50:95/% | Params/M | FPS/(帧/秒) | ||
---|---|---|---|---|---|---|---|---|---|---|
Small | Medium | Large | ||||||||
1 | 34.5 | 48.6 | 30.0 | 63.1 | 35.8 | 11.2 | 185.2 | |||
2 | √ | 35.5 | 50.9 | 43.5 | 64.7 | 35.2 | 10.0 | 212.8 | ||
3 | √ | 35.5 | 51.2 | 35.0 | 65.5 | 37.7 | 12.3 | 153.8 | ||
4 | √ | 36.7 | 46.2 | 25.0 | 65.8 | 37.9 | 11.4 | 172.4 | ||
5 | √ | √ | 35.1 | 52.8 | 42.5 | 66.4 | 37.6 | 11.5 | 178.8 | |
6 | √ | √ | 37.4 | 49.6 | 35.7 | 66.1 | 37.1 | 10.9 | 196.0 | |
7 | √ | √ | 35.2 | 51.2 | 35.0 | 66.7 | 37.2 | 11.7 | 163.9 | |
8 | √ | √ | √ | 37.6 | 51.6 | 49.0 | 69.7 | 38.9 | 10.8 | 179.6 |
表2 改进算法的消融实验结果
Table 2 Ablation experiment results of the improved algorithm
实验 | MSFE | SPKA | STSIL | AP50:95/% | mAP50/% | mAP50:95/% | Params/M | FPS/(帧/秒) | ||
---|---|---|---|---|---|---|---|---|---|---|
Small | Medium | Large | ||||||||
1 | 34.5 | 48.6 | 30.0 | 63.1 | 35.8 | 11.2 | 185.2 | |||
2 | √ | 35.5 | 50.9 | 43.5 | 64.7 | 35.2 | 10.0 | 212.8 | ||
3 | √ | 35.5 | 51.2 | 35.0 | 65.5 | 37.7 | 12.3 | 153.8 | ||
4 | √ | 36.7 | 46.2 | 25.0 | 65.8 | 37.9 | 11.4 | 172.4 | ||
5 | √ | √ | 35.1 | 52.8 | 42.5 | 66.4 | 37.6 | 11.5 | 178.8 | |
6 | √ | √ | 37.4 | 49.6 | 35.7 | 66.1 | 37.1 | 10.9 | 196.0 | |
7 | √ | √ | 35.2 | 51.2 | 35.0 | 66.7 | 37.2 | 11.7 | 163.9 | |
8 | √ | √ | √ | 37.6 | 51.6 | 49.0 | 69.7 | 38.9 | 10.8 | 179.6 |
检测算法 | AP50 | mAP50 | |||
---|---|---|---|---|---|
立交桥 | 运动场 | 飞机 | 油桶 | ||
TPH-YOLOv5 | 93.1 | 99.2 | 94.4 | 97.5 | 96.1 |
GBH-YOLOv5 | 89.3 | 99.3 | 94.6 | 96.9 | 95.0 |
YOLOv6s | 77.3 | 98.4 | 90.7 | 95.4 | 90.5 |
YOlOv7-tiny | 94.0 | 98.8 | 94.3 | 96.9 | 96.0 |
YOLOv8s | 76.2 | 99.2 | 94.4 | 97.2 | 91.7 |
YOLOv10s | 87.7 | 98.2 | 94.4 | 98.0 | 94.6 |
YOLO11s | 94.4 | 98.5 | 95.0 | 97.0 | 96.2 |
Ours | 94.7 | 99.5 | 95.5 | 97.6 | 96.8 |
表3 不同算法在RSOD数据集中的性能比较/%
Table 3 Performance comparison of different algorithms on the RSOD dataset/%
检测算法 | AP50 | mAP50 | |||
---|---|---|---|---|---|
立交桥 | 运动场 | 飞机 | 油桶 | ||
TPH-YOLOv5 | 93.1 | 99.2 | 94.4 | 97.5 | 96.1 |
GBH-YOLOv5 | 89.3 | 99.3 | 94.6 | 96.9 | 95.0 |
YOLOv6s | 77.3 | 98.4 | 90.7 | 95.4 | 90.5 |
YOlOv7-tiny | 94.0 | 98.8 | 94.3 | 96.9 | 96.0 |
YOLOv8s | 76.2 | 99.2 | 94.4 | 97.2 | 91.7 |
YOLOv10s | 87.7 | 98.2 | 94.4 | 98.0 | 94.6 |
YOLO11s | 94.4 | 98.5 | 95.0 | 97.0 | 96.2 |
Ours | 94.7 | 99.5 | 95.5 | 97.6 | 96.8 |
检测算法 | AP50 | mAP50 | ||||
---|---|---|---|---|---|---|
杆塔 | 绝缘子 | 间隔棒 | 防振锤 | 塔牌 | ||
TPH-YOLOv5 | 41.9 | 81.3 | 90.4 | 25.8 | 81.9 | 64.2 |
GBH-YOLOv5 | 34.7 | 75.1 | 85.8 | 27.6 | 80.8 | 60.8 |
YOLOv6s | 43.9 | 88.3 | 77.5 | 8.3 | 73.4 | 58.3 |
YOlOv7-tiny | 37.6 | 72.6 | 79.8 | 13.8 | 71.8 | 55.1 |
YOLOv8s | 46.4 | 78.5 | 91.8 | 27.1 | 78.2 | 64.4 |
YOLOv10s | 39.2 | 89.0 | 91.4 | 24.1 | 73.9 | 63.5 |
YOLO11s | 42.7 | 88.7 | 88.0 | 25.4 | 83.9 | 65.7 |
Ours | 42.9 | 89.2 | 92.5 | 29.2 | 82.2 | 67.2 |
表4 不同算法在STN_PLAD数据集中的性能比较/%
Table 4 Performance comparison of different algorithms on the STN_PLAD dataset/%
检测算法 | AP50 | mAP50 | ||||
---|---|---|---|---|---|---|
杆塔 | 绝缘子 | 间隔棒 | 防振锤 | 塔牌 | ||
TPH-YOLOv5 | 41.9 | 81.3 | 90.4 | 25.8 | 81.9 | 64.2 |
GBH-YOLOv5 | 34.7 | 75.1 | 85.8 | 27.6 | 80.8 | 60.8 |
YOLOv6s | 43.9 | 88.3 | 77.5 | 8.3 | 73.4 | 58.3 |
YOlOv7-tiny | 37.6 | 72.6 | 79.8 | 13.8 | 71.8 | 55.1 |
YOLOv8s | 46.4 | 78.5 | 91.8 | 27.1 | 78.2 | 64.4 |
YOLOv10s | 39.2 | 89.0 | 91.4 | 24.1 | 73.9 | 63.5 |
YOLO11s | 42.7 | 88.7 | 88.0 | 25.4 | 83.9 | 65.7 |
Ours | 42.9 | 89.2 | 92.5 | 29.2 | 82.2 | 67.2 |
检测算法 | AP50 | mAP50 | mAP50:95 | ||
---|---|---|---|---|---|
正常 | 倾斜 | 掉落 | |||
YOLOv8n | 62.8 | 54.1 | 66.5 | 61.1 | 33.7 |
YOLOv8m | 70.8 | 56.1 | 72.1 | 66.3 | 37.4 |
YOLOv8l | 71.0 | 57.1 | 75.2 | 67.8 | 37.9 |
YOLOv8n-ours | 68.9(↑6.1) | 55.2(↑1.1) | 70.0(↑3.5) | 64.7(↑3.6) | 37.0(↑3.3) |
YOLOv8m-ours | 70.9(↑0.1) | 57.6(↑1.5) | 74.1(↑2.0) | 67.5(↑1.2) | 38.4(↑1.0) |
YOLOv8l-ours | 73.2(↑2.2) | 57.9(↑0.8) | 76.6(↑1.4) | 69.2(↑1.4) | 42.2(↑4.3) |
表5 YOLO验证实验/%
Table 5 Validation experiments on YOLO/%
检测算法 | AP50 | mAP50 | mAP50:95 | ||
---|---|---|---|---|---|
正常 | 倾斜 | 掉落 | |||
YOLOv8n | 62.8 | 54.1 | 66.5 | 61.1 | 33.7 |
YOLOv8m | 70.8 | 56.1 | 72.1 | 66.3 | 37.4 |
YOLOv8l | 71.0 | 57.1 | 75.2 | 67.8 | 37.9 |
YOLOv8n-ours | 68.9(↑6.1) | 55.2(↑1.1) | 70.0(↑3.5) | 64.7(↑3.6) | 37.0(↑3.3) |
YOLOv8m-ours | 70.9(↑0.1) | 57.6(↑1.5) | 74.1(↑2.0) | 67.5(↑1.2) | 38.4(↑1.0) |
YOLOv8l-ours | 73.2(↑2.2) | 57.9(↑0.8) | 76.6(↑1.4) | 69.2(↑1.4) | 42.2(↑4.3) |
检测算法 | mAP50 | ||||
---|---|---|---|---|---|
正常图像 | 有雨图像 | 有雾图像 | 暗化图像 | 模糊图像 | |
TPH-YOLOv5 | 64.7 | 59.5(↓ 5.2) | 56.2(↓ 8.5) | 59.3(↓ 5.4) | 57.7(↓ 7.0) |
GBH-YOLOv5 | 64.0 | 59.2(↓ 4.8) | 58.9(↓ 5.1) | 57.1(↓ 6.9) | 56.1(↓ 7.9) |
YOLOv6s | 64.3 | 58.7(↓ 5.6) | 57.9(↓ 6.4) | 59.8(↓ 4.5) | 56.2(↓ 8.1) |
YOlOv7-tiny | 65.7 | 56.5(↓ 9.2) | 61.9(↓ 3.8) | 57.8(↓ 7.9) | 58.8(↓ 6.9) |
YOLOv8s | 64.8 | 58.4(↓ 6.4) | 56.9(↓ 7.9) | 55.7(↓ 9.1) | 57.2(↓ 7.6) |
YOLOv10s | 63.7 | 57.7(↓ 6.0) | 58.4(↓ 5.3) | 59.1(↓ 4.6) | 58.7(↓ 5.0) |
YOLO11s | 62.6 | 56.7(↓ 5.9) | 55.9(↓ 6.7) | 57.3(↓ 5.3) | 55.1(↓ 7.5) |
Ours | 70.5 | 66.7(↓ 3.8) | 67.2(↓ 3.3) | 67.9(↓ 2.6) | 67.7(↓ 2.8) |
表6 不同算法受噪声影响性能比较/%
Table 6 Performance comparison of different algorithms under noise conditions/%
检测算法 | mAP50 | ||||
---|---|---|---|---|---|
正常图像 | 有雨图像 | 有雾图像 | 暗化图像 | 模糊图像 | |
TPH-YOLOv5 | 64.7 | 59.5(↓ 5.2) | 56.2(↓ 8.5) | 59.3(↓ 5.4) | 57.7(↓ 7.0) |
GBH-YOLOv5 | 64.0 | 59.2(↓ 4.8) | 58.9(↓ 5.1) | 57.1(↓ 6.9) | 56.1(↓ 7.9) |
YOLOv6s | 64.3 | 58.7(↓ 5.6) | 57.9(↓ 6.4) | 59.8(↓ 4.5) | 56.2(↓ 8.1) |
YOlOv7-tiny | 65.7 | 56.5(↓ 9.2) | 61.9(↓ 3.8) | 57.8(↓ 7.9) | 58.8(↓ 6.9) |
YOLOv8s | 64.8 | 58.4(↓ 6.4) | 56.9(↓ 7.9) | 55.7(↓ 9.1) | 57.2(↓ 7.6) |
YOLOv10s | 63.7 | 57.7(↓ 6.0) | 58.4(↓ 5.3) | 59.1(↓ 4.6) | 58.7(↓ 5.0) |
YOLO11s | 62.6 | 56.7(↓ 5.9) | 55.9(↓ 6.7) | 57.3(↓ 5.3) | 55.1(↓ 7.5) |
Ours | 70.5 | 66.7(↓ 3.8) | 67.2(↓ 3.3) | 67.9(↓ 2.6) | 67.7(↓ 2.8) |
图7 不同模拟自然环境下的可视化结果((a)多尺度目标场景;(b)小尺度目标场景;(c)复杂背景目标场景)
Fig. 7 Visualization results under different simulated natural environments ((a) Multi-Scale target scene; (b) Small-Scale target scene; (c) Complex background)
[1] | GHASEMI Y, JEONG H, CHOI S H, et al. Deep learning- based object detection in augmented reality: a systematic review[J]. Computers in Industry, 2022, 139: 103661. |
[2] | ZHAI Y J, YANG X, WANG Q M, et al. Hybrid knowledge R-CNN for transmission line multifitting detection[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 5013312. |
[3] | 赵振兵, 蒋志钢, 李延旭, 等. 输电线路部件视觉缺陷检测综述[J]. 中国图象图形学报, 2021, 26(11): 2545-2560. |
ZHAO Z B, JIANG Z G, LI Y X, et al. Overview of visual defect detection of transmission line components[J]. Journal of Image and Graphics, 2021, 26(11): 2545-2560 (in Chinese). | |
[4] |
翟永杰, 赵晓瑜, 王璐瑶, 等. IDD-YOLOv7: 一种用于输电线路绝缘子多缺陷的轻量化检测方法[J]. 图学学报, 2024, 45(1): 90-101.
DOI |
ZHAI Y J, ZHAO X Y, WANG L Y, et al. IDD-YOLOv7: a lightweight method for multiple defect detection of insulators in transmission lines[J]. Journal of Graphics, 2024, 45(1): 90-101 (in Chinese).
DOI |
|
[5] | BAO W X, REN Y X, LIANG D, et al. Defect detection algorithm of anti-vibration hammer based on improved cascade R-CNN[C]// 2020 International Conference on Intelligent Computing and Human-Computer Interaction. New York: IEEE Press, 2020: 294-297. |
[6] |
郝帅, 赵新生, 马旭, 等. 基于TR-YOLOv5的输电线路多类缺陷目标检测方法[J]. 图学学报, 2023, 44(4): 667-676.
DOI |
HAO S, ZHAO X S, MA X, et al. Multi-class defect target detection method for transmission lines based on TR-YOLOv5[J]. Journal of Graphics, 2023, 44(4): 667-676 (in Chinese).
DOI |
|
[7] | ZHOU F R, WEN G, QIAN G C, et al. Retracted: a high-efficiency deep-learning-based antivibration hammer defect detection model for energy-efficient transmission line inspection systems[J]. International Journal of Antennas and Propagation, 2022, 2022(1): 3867581. |
[8] | LIU Z Y, WU G P, HE W S, et al. Key target and defect detection of high-voltage power transmission lines with deep learning[J]. International Journal of Electrical Power & Energy Systems, 2022, 142: 108277. |
[9] | 梁华刚, 赵慧霞, 刘丽华, 等. 结合跨层特征融合与级联检测器的防震锤缺陷检测[J]. 中国图象图形学报, 2023, 28(11): 3485-3496. |
LIANG H G, ZHAO H X, LIU L H, et al. Combining cross-layer feature fusion with cascade detectors for anti-vibration hammer defects detection[J]. Journal of Image and Graphics, 2023, 28(11): 3485-3496 (in Chinese). | |
[10] | ZHAI Y J, YANG K, ZHAO Z Y, et al. Geometric characteristic learning R-CNN for shockproof hammer defect detection[J]. Engineering Applications of Artificial Intelligence, 2022, 116: 105429. |
[11] | LAU K W, PO L M, REHMAN Y A U. Large separable kernel attention: Rethinking the large kernel attention design in CNN[J]. Expert Systems with Applications, 2024, 236: 121352. |
[12] | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 936-944. |
[13] | CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 1800-1807. |
[14] | YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL]. [2024-07-10]https://arxiv.org/abs/1511.07122. |
[15] | VOOTURI D T, VARMA G, KOTHAPALLI K. Dynamic block sparse reparameterization of convolutional neural networks[C]// 2019 IEEE/CVF International Conference on Computer Vision Workshop. New York: IEEE Press, 2019: 3046-3053. |
[16] | HUANG Z C, WANG J L, FU X S, et al. DC-SPP-YOLO: dense connection and spatial pyramid pooling based YOLO for object detection[J]. Information Sciences, 2020, 522: 241-258. |
[17] | WANG P Q, CHEN P F, YUAN Y, et al. Understanding convolution for semantic segmentation[C]// 2018 IEEE Winter Conference on Applications of Computer Vision. New York: IEEE Press, 2018: 1451-1460. |
[18] | GONG H, MU T K, LI Q X, et al. Swin-transformer-enabled YOLOv5 with attention mechanism for small object detection on satellite images[J]. Remote Sensing, 2022, 14(12): 2861. |
[19] |
张相胜, 杨骁. 基于改进YOLOv7-tiny的橡胶密封圈缺陷检测方法[J]. 图学学报, 2024, 45(3): 446-453.
DOI |
ZHANG X S, YANG X. Defect detection method of rubber seal ring based on improved YOLOv7-tiny[J]. Journal of Graphics, 2024, 45(3): 446-453 (in Chinese).
DOI |
|
[20] | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]// The 13th European Conference on Computer Vision. Cham: Springer, 2014: 740-755. |
[21] | ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 2778-2788. |
[22] | LI L L, WANG Z F, ZHANG T T. GBH-YOLOv5: ghost convolution with BottleneckCSP and tiny target prediction head incorporating YOLOv5 for PV panel defect detection[J]. Electronics, 2023, 12(3): 561. |
[23] | LI C Y, LI L L, JIANG H L, et al. YOLOv6:a single-stage object detection framework for industrial applications[EB/OL]. [2024-07-10]https://arxiv.org/abs/2209.02976. |
[24] | WANG A, CHEN H, LIU L H, et al. YOLOv10:real-time end-to-end object detection[EB/OL]. [2024-07-10]https://arxiv.org/abs/2405.14458. |
[25] | LI K, WAN G, CHENG G, et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307. |
[26] | VIEIRA-E-SILVA A L B, DE CASTRO FELIX H, DE MENEZES CHAVES T, et al.STN PLAD: a dataset for multi-size power line assets detection in high-resolution UAV images[C]// The 34th SIBGRAPI Conference on Graphics, Patterns and Images. New York: IEEE Press, 2021: 215-222. |
[1] | 王素琴, 杜雨洁, 石敏, 朱登明. 类别不均衡的少样本工业产品表观缺陷检测[J]. 图学学报, 2025, 46(3): 568-577. |
[2] | 于冰, 程广, 黄东晋, 丁友东. 基于双流网络融合的三维人体网格重建[J]. 图学学报, 2025, 46(3): 625-634. |
[3] | 雷玉林, 刘利刚. 基于深度强化学习的可缓冲的物体运输和装箱[J]. 图学学报, 2025, 46(3): 697-708. |
[4] | 王志东, 陈晨阳, 刘晓明. 基于自适应特征提取的通信光缆缺陷检测方法[J]. 图学学报, 2025, 46(2): 241-248. |
[5] | 张立立, 杨康, 张珂, 魏薇, 李晶, 谭洪鑫, 张翔宇. 面向柴油车辆排放黑烟的改进型YOLOv8检测算法研究[J]. 图学学报, 2025, 46(2): 249-258. |
[6] | 翟永杰, 王璐瑶, 赵晓瑜, 胡哲东, 王乾铭, 王亚茹. 基于级联查询-位置关系的输电线路多金具检测方法[J]. 图学学报, 2025, 46(2): 288-299. |
[7] | 赵振兵, 韩钰, 唐辰康. 基于改进YOLOv8的配电线路绝缘子缺陷级联检测方法[J]. 图学学报, 2025, 46(1): 1-12. |
[8] | 崔克彬, 耿佳昌. 基于EE-YOLOv8s的多场景火灾迹象检测算法[J]. 图学学报, 2025, 46(1): 13-27. |
[9] | 王志东, 陈晨阳, 刘晓明. 基于轻量化改进YOLOv8的通信光缆缺陷检测[J]. 图学学报, 2025, 46(1): 28-34. |
[10] | 陈冠豪, 徐丹, 贺康建, 施洪贞, 张浩. 基于转置注意力和CNN的图像超分辨率重建网络[J]. 图学学报, 2025, 46(1): 35-46. |
[11] | 张文祥, 王夏黎, 王欣仪, 杨宗宝. 一种强化伪造区域关注的深度伪造人脸检测方法[J]. 图学学报, 2025, 46(1): 47-58. |
[12] | 苑朝, 赵明雪, 张丰羿, 冯晓勇, 李冰, 陈瑞. 基于点云特征增强的复杂室内场景3D目标检测[J]. 图学学报, 2025, 46(1): 59-69. |
[13] | 卢洋, 陈林慧, 姜晓恒, 徐明亮. SDENet:基于多尺度注意力质量感知的合成缺陷数据评价网络[J]. 图学学报, 2025, 46(1): 94-103. |
[14] | 李琼, 考月英, 张莹, 徐沛. 面向无人机航拍图像的目标检测研究综述[J]. 图学学报, 2024, 45(6): 1145-1164. |
[15] | 胡凤阔, 叶兰, 谭显峰, 张钦展, 胡志新, 方清, 王磊, 满孝锋. 一种基于改进YOLOv8的轻量化路面病害检测算法[J]. 图学学报, 2024, 45(5): 892-900. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||