| [1] |
王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003: 1-9.
|
|
WANG X C. Finite element method[M]. Beijing: Tsinghua University Press, 2003: 1-9 (in Chinese).
|
| [2] |
PHANDEN R K, SHARMA P, DUBEY A. A review on simulation in digital twin for aerospace, manufacturing and robotics[J]. Materials Today: Proceedings, 2021, 38: 174-178.
DOI
URL
|
| [3] |
RAJ E F I, APPADURAI M, RANI E F I, et al. Finite-element design and analysis of switched reluctance motor for automobileapplications[J]. Multiscale and Multidisciplinary Modeling, Experiments and Design, 2022, 5(3): 269-277.
DOI
|
| [4] |
TRAN-NGOC H, KHATIR S, LE-XUAN T, et al. Finite element model updating of a multispan bridge with a hybrid metaheuristic search algorithm using experimental data from wireless triaxial sensors[J]. Engineering with Computers, 2022, 38(3): 1865-1883.
DOI
|
| [5] |
刘习洲, 王城璟, 王琥. 基于h型自适应有限元法在薄板冲压成型中的应用[J]. 图学学报, 2021, 42(6): 970-978.
|
|
LIU X Z, WANG C J, WANG H. Application in sheet metal forming based on h-adaptive finite element method[J]. Journal of Graphics, 2021, 42(6): 970-978 (in Chinese).
|
| [6] |
PHELLAN R, HACHEM B, CLIN J, et al. Real-time biomechanics using the finite element method and machine learning: review and perspective[J]. Medical Physics, 2021, 48(1): 7-18.
DOI
PMID
|
| [7] |
BOITO F, GOMES A T A, PEYRONDET L, et al. I/O performance of multiscale finite element simulations on HPC environments[C]// 2022 International Symposium on Computer Architecture and High Performance Computing Workshops. New York: IEEE Press, 2022: 9-16.
|
| [8] |
EL KADMIRI R, BELAASILIA Y, TIMESLI A. Analysis of inhomogeneous structures in small and large deformations using the finite element-meshless coupling method[J]. Computers & Mathematics with Applications, 2024, 169: 273-297.
DOI
URL
|
| [9] |
ZHAO J G, LIU G R, HUO S H, et al. N-sided polygonal cell-based smoothed finite element method (nCS-FEM) based on Wachspress shape function for modal analysis[J]. Engineering Analysis with Boundary Elements, 2024, 159: 434-451.
DOI
URL
|
| [10] |
ZHANG L, CHENG L, LI H Y, et al. Hierarchical deep-learning neural networks: finite elements and beyond[J]. Computational Mechanics, 2021, 67(1): 207-230.
DOI
|
| [11] |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707.
DOI
URL
|
| [12] |
LU L, JIN P Z, PANG G F, et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators[J]. Nature Machine Intelligence, 2021, 3(3): 218-229.
DOI
|
| [13] |
NOVO J, TERRÉS E. Can neural networks learn finite elements?[J]. Journal of Computational and Applied Mathematics, 2025, 453: 116168.
DOI
URL
|
| [14] |
SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80.
DOI
PMID
|
| [15] |
HE J C, LI L, XU J C, et al. ReLUdeep neural networks and linear finite elements[J]. Journal of Computational Mathematics, 2020, 38(3): 502-527.
DOI
URL
|
| [16] |
LONGO M, OPSCHOOR J A A, DISCH N, et al. de Rham compatible deep neural network FEM[J]. Neural Networks, 2023, 165: 721-739.
DOI
PMID
|
| [17] |
ROWBOTTOM J, MAIERHOFER G, DEVENEY T, et al. G-Adaptivity: optimised graph-based mesh relocation for finite element methods[EB/OL]. [2025-07-17]. https://arxiv.org/abs/2407.04516.
|
| [18] |
ŠKARDOVÁ K, DABY-SEESARAM A, GENET M. Finite element neural network interpolation: Part I—interpretable and adaptive discretization for solving PDEs[EB/OL].(2025-08-28) [2025-09-05]. https://doi.org/10.1007/s00466-025-02677-3.
|
| [19] |
WANG Y F, LIN Z S, XIE H H. Neural network element method for partial differential equations[EB/OL]. [2025-07-17]. https://arxiv.org/abs/2504.16862.
|
| [20] |
XIONG W, LONG X Y, BORDAS S P A, et al. The deep finite element method: a deep learning framework integrating the physics-informed neural networks with the finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 2025, 436: 117681.
DOI
URL
|
| [21] |
MOSELEY B, MARKHAM A, NISSEN-MEYER T. Finite basis physics-informed neural networks (FBPINNs): a scalable domain decomposition approach for solving differential equations[J]. Advances in Computational Mathematics, 2023, 49(4): 62.
DOI
|
| [22] |
NI N, XU Q Y, LI Z H, et al. Numerical coarsening with neural shape functions[J]. Computer Graphics Forum, 2023, 42(6): e14736.
DOI
URL
|
| [23] |
VU T H, DEEKS A J. Use of higher‐order shape functions in the scaled boundary finite element method[J]. International Journal for Numerical Methods in Engineering, 2006, 65(10): 1714-1733.
DOI
URL
|
| [24] |
JAGOTA V, SETHI A P S, KUMAR K. Finite element method: an overview[J]. Walailak Journal of Science and Technology (WJST), 2013, 10(1): 1-8.
|
| [25] |
ONISHI Y. Selective cell-based smoothed finite element method using 10-node tetrahedral element with radial element subdivision[J]. International Journal of Computational Methods, 2022, 19(7): 2141015.
DOI
URL
|