图学学报 ›› 2024, Vol. 45 ›› Issue (6): 1328-1337.DOI: 10.11996/JG.j.2095-302X.2024061328
收稿日期:
2024-06-13
接受日期:
2024-09-26
出版日期:
2024-12-31
发布日期:
2024-12-24
第一作者:
闫建红(1972-),女,教授,博士。主要研究方向为机器学习、计算机视觉。E-mail:yan_jian_hong@163.com
基金资助:
Received:
2024-06-13
Accepted:
2024-09-26
Published:
2024-12-31
Online:
2024-12-24
First author:
YAN Jianhong (1972-), professor, Ph.D. Her main research interests cover machine learning, computer vision. E-mail:yan_jian_hong@163.com
Supported by:
摘要:
针对无人机图像目标像素低、背景复杂、模型部署难等问题,提出一种基于YOLOv8的轻量级多尺度特征融合小目标检测算法。为了降低网络参数量,提高模型检测速度,使用fasternet block替换C2f的bottleneck,构建轻量化特征提取模块FasterC2f;为了增强模型多尺度特征融合能力,设计全新的聚焦扩散特征金字塔结构,使颈部网络每层特征图都聚焦三层特征信息;设计共享卷积检测头,在优化模型参数量的同时,让每个检测头都包含不同尺度特征信息;重构小目标检测网络,采用更大尺度的三层检测头,提高模型对小目标的特征学习能力。在Visdrone数据集上的实验结果表明,与YOLOv8s相比,该模型的精确率、召回率和mAP分别提高了5.1%,5.4%和6.6%,参数量降低了68%,模型文件体积减少了15.3 MB,FPS提高了16%,表明该模型具有检测精度高、检测速度快、模型易部署等优点。
中图分类号:
闫建红, 冉同霄. 基于YOLOv8的轻量化无人机图像目标检测算法[J]. 图学学报, 2024, 45(6): 1328-1337.
YAN Jianhong, RAN Tongxiao. Lightweight UAV image target detection algorithm based on YOLOv8[J]. Journal of Graphics, 2024, 45(6): 1328-1337.
图8 不同检测网络对比((a) YOLOv8网络;(b)四层检测网络;(c)重构小目标检测网络)
Fig. 8 Comparison of different detection networks ((a) YOLOv8s network; (b) Four-layer detection network; (c) Reconstructing the small target detection network)
参数名称 | 参数值 |
---|---|
epoch | 300 |
batch-size | 8 |
初始学习率 | 0.01 |
优化器 | SGD |
momentum | 0.937 |
图像分辨率 | 640×640 |
表1 训练参数
Table 1 Training parameters
参数名称 | 参数值 |
---|---|
epoch | 300 |
batch-size | 8 |
初始学习率 | 0.01 |
优化器 | SGD |
momentum | 0.937 |
图像分辨率 | 640×640 |
实验 | P/ % | R/ % | mAP/ % | Weight/ MB | FPS |
---|---|---|---|---|---|
YOLOv8s | 50.2 | 38.0 | 38.8 | 22.5 | 110 |
替换backbone | 49.9 | 38.6 | 39.4 | 18.7 | 238 |
替换neck | 50.3 | 37.9 | 39.3 | 18.8 | 161 |
全部替换 | 49.0 | 37.6 | 38.8 | 16.0 | 251 |
表2 FasterC2f消融实验
Table 2 FasterC2f ablation experiment
实验 | P/ % | R/ % | mAP/ % | Weight/ MB | FPS |
---|---|---|---|---|---|
YOLOv8s | 50.2 | 38.0 | 38.8 | 22.5 | 110 |
替换backbone | 49.9 | 38.6 | 39.4 | 18.7 | 238 |
替换neck | 50.3 | 37.9 | 39.3 | 18.8 | 161 |
全部替换 | 49.0 | 37.6 | 38.8 | 16.0 | 251 |
模型 | P/ % | R/ % | mAP/ % | Weight/ MB | FPS |
---|---|---|---|---|---|
YOLOv8s | 50.2 | 38.0 | 38.8 | 22.5 | 110 |
YOLOv8s+BiFPN | 50.0 | 39.9 | 40.7 | 56.7 | 149 |
YOLOv8s+AFPN | 49.6 | 36.1 | 37.7 | 17.2 | 207 |
YOLOv8s+FD-FPN | 51.5 | 38.2 | 39.9 | 21.1 | 176 |
表3 不同特征金字塔网络对比试验
Table 3 Comparison experiment of different feature pyramid networks
模型 | P/ % | R/ % | mAP/ % | Weight/ MB | FPS |
---|---|---|---|---|---|
YOLOv8s | 50.2 | 38.0 | 38.8 | 22.5 | 110 |
YOLOv8s+BiFPN | 50.0 | 39.9 | 40.7 | 56.7 | 149 |
YOLOv8s+AFPN | 49.6 | 36.1 | 37.7 | 17.2 | 207 |
YOLOv8s+FD-FPN | 51.5 | 38.2 | 39.9 | 21.1 | 176 |
模型 | P/ % | R/ % | mAP/ % | Weight/ MB | FPS |
---|---|---|---|---|---|
YOLOv8s | 50.2 | 38 | 38.8 | 22.5 | 110 |
YOLOv8s+ 小目标检测层 | 55.3 | 41.1 | 44.0 | 36.8 | 108 |
YOLOv8s+ 重构小目标检测层 | 55.1 | 42.0 | 42.5 | 7.4 | 101 |
表4 不同检测网络对比试验
Table 4 Comparison experiment of different detection networks
模型 | P/ % | R/ % | mAP/ % | Weight/ MB | FPS |
---|---|---|---|---|---|
YOLOv8s | 50.2 | 38 | 38.8 | 22.5 | 110 |
YOLOv8s+ 小目标检测层 | 55.3 | 41.1 | 44.0 | 36.8 | 108 |
YOLOv8s+ 重构小目标检测层 | 55.1 | 42.0 | 42.5 | 7.4 | 101 |
实验 | P/% | R/% | mAP/% | Para/M | Weight/MB | FPS |
---|---|---|---|---|---|---|
YOLOv8s | 50.2 | 38 | 38.8 | 11.17 | 22.5 | 110 |
+FasterC2f | 49.9 | 38.6 | 39.4 | 9.68 | 18.7 | 238 |
+FD-FPN | 51.5 | 38.2 | 39.3 | 10.97 | 21.1 | 176 |
+SCDH | 51.5 | 38.8 | 39.5 | 9.43 | 18.2 | 204 |
+重构小目标 | 55.1 | 42 | 44.3 | 3.53 | 7.4 | 101 |
+FasterC2f +重构小目标 | 52.9 | 41.7 | 43.1 | 3.03 | 6.1 | 155 |
+FD-FPN +SCDH | 52.0 | 39.0 | 40.1 | 9.17 | 17.7 | 185 |
+FasterC2f +重构小目标+SCDH | 52.1 | 41.9 | 43.4 | 4.17 | 5.2 | 150 |
Ours | 55.3 | 43.4 | 45.4 | 3.62 | 7.2 | 128 |
表5 消融实验
Table 5 Ablation experiment
实验 | P/% | R/% | mAP/% | Para/M | Weight/MB | FPS |
---|---|---|---|---|---|---|
YOLOv8s | 50.2 | 38 | 38.8 | 11.17 | 22.5 | 110 |
+FasterC2f | 49.9 | 38.6 | 39.4 | 9.68 | 18.7 | 238 |
+FD-FPN | 51.5 | 38.2 | 39.3 | 10.97 | 21.1 | 176 |
+SCDH | 51.5 | 38.8 | 39.5 | 9.43 | 18.2 | 204 |
+重构小目标 | 55.1 | 42 | 44.3 | 3.53 | 7.4 | 101 |
+FasterC2f +重构小目标 | 52.9 | 41.7 | 43.1 | 3.03 | 6.1 | 155 |
+FD-FPN +SCDH | 52.0 | 39.0 | 40.1 | 9.17 | 17.7 | 185 |
+FasterC2f +重构小目标+SCDH | 52.1 | 41.9 | 43.4 | 4.17 | 5.2 | 150 |
Ours | 55.3 | 43.4 | 45.4 | 3.62 | 7.2 | 128 |
模型 | P/% | R/% | mAP/% | Para/M |
---|---|---|---|---|
YOLOv5s | 44.9 | 35.1 | 33.7 | 7.13 |
YOLOv6s | 47.3 | 36.4 | 36.8 | 16.30 |
YOLOv7 | 46.0 | 37.9 | 34.5 | 6.04 |
YOLOv8s | 50.2 | 38.0 | 38.8 | 11.17 |
YOLOv8-FasterNet[ | 48.8 | 36.6 | 37.1 | 8.60 |
Bi-YOLO[ | 51.6 | 39.6 | 40.7 | 6.49 |
文献[ | 50.7 | 40.4 | 41.3 | 2.62 |
Ours | 55.3 | 43.4 | 45.4 | 3.62 |
表6 算法对比实验
Table 6 Algorithm comparison experiment
模型 | P/% | R/% | mAP/% | Para/M |
---|---|---|---|---|
YOLOv5s | 44.9 | 35.1 | 33.7 | 7.13 |
YOLOv6s | 47.3 | 36.4 | 36.8 | 16.30 |
YOLOv7 | 46.0 | 37.9 | 34.5 | 6.04 |
YOLOv8s | 50.2 | 38.0 | 38.8 | 11.17 |
YOLOv8-FasterNet[ | 48.8 | 36.6 | 37.1 | 8.60 |
Bi-YOLO[ | 51.6 | 39.6 | 40.7 | 6.49 |
文献[ | 50.7 | 40.4 | 41.3 | 2.62 |
Ours | 55.3 | 43.4 | 45.4 | 3.62 |
模型 | P/% | R/% | mAP/% | Weight/MB |
---|---|---|---|---|
YOLOv8s | 80.6 | 75.1 | 82.0 | 22.6 |
Ours | 82.2 | 77.7 | 83.4 | 7.7 |
表7 TT100K数据集对比实验
Table 7 Comparison experiment on TT100K datasets
模型 | P/% | R/% | mAP/% | Weight/MB |
---|---|---|---|---|
YOLOv8s | 80.6 | 75.1 | 82.0 | 22.6 |
Ours | 82.2 | 77.7 | 83.4 | 7.7 |
[1] | BOUGUETTAYA A, ZARZOUR H, KECHIDA A, et al. Vehicle detection from UAV imagery with deep learning: a review[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(11): 6047-6067. |
[2] |
李利霞, 王鑫, 王军, 等. 基于特征融合与注意力机制的无人机图像小目标检测算法[J]. 图学学报, 2023, 44(4): 658-666.
DOI |
LI L X, WANG X, WANG J, et al. Small object detection algorithm in UAV image based on feature fusion and attention mechanism[J]. Journal of Graphics, 2023, 44(4): 658-666. (in Chinese) | |
[3] | CHEN Y T, LI J, NIU Y F, et al. Small object detection networks based on classification-oriented super-resolution GAN for UAV aerial imagery[C]// 2019 Chinese Control And Decision Conference. New York: IEEE Press, 2019: 4610-4615. |
[4] | 潘晓英, 贾凝心, 穆元震, 等. 小目标检测研究综述[J]. 中国图象图形学报, 2023, 28(9): 2587-2615. |
PAN X Y, JIA N X, MU Y Z, et al. Survey of small object detection[J]. Journal of Image and Graphics, 2023, 28(9): 2587-2615. (in Chinese) | |
[5] | DONG J, OTA K, DONG M X. UAV-based real-time survivor detection system in post-disaster search and rescue operations[J]. IEEE Journal on Miniaturization for Air and Space Systems, 2021, 2(4): 209-219. |
[6] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[7] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]// Computer Vision-ECCV 2016: 14th European Conference. Cham: Springer, 2016: 21-37. |
[8] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788. |
[9] | LIU W J, QIANG J, LI X X, et al. UAV image small object detection based on composite backbone network[J]. Mobile Information Systems, 2022, 2022(1): 7319529. |
[10] |
魏陈浩, 杨睿, 刘振丙, 等. 具有双层路由注意力的YOLOv8道路场景目标检测方法[J]. 图学学报, 2023, 44(6): 1104-1111.
DOI |
WEI C H, YANG R, LIU Z B, et al. YOLOv8 with bi-level routing attention for road scene object detection[J]. Journal of Graphics, 2023, 44(6): 1104-1111. (in Chinese) | |
[11] |
史涛, 崔杰, 李松. 优化改进YOLOv8实现实时无人机车辆检测的算法[J]. 计算机工程与应用, 2024, 60(9): 79-89.
DOI |
SHI T, CUI J, LI S. Algorithm for real-time vehicle detection from UAVs based on optimizing and improving YOLOv8[J]. Computer Engineering and Applications, 2024, 60(9): 79-89. (in Chinese)
DOI |
|
[12] | LI Y T, FAN Q S, HUANG H S, et al. A modified YOLOv8 detection network for UAV aerial image recognition[J]. Drones, 2023, 7(5): 304. |
[13] |
吴明杰, 云利军, 陈载清, 等. 改进YOLOv5s的无人机视角下小目标检测算法[J]. 计算机工程与应用, 2024, 60(2): 191-199.
DOI |
WU M J, YUN L J, CHEN Z Q, et al. Improved YOLOv5s small object detection algorithm in UAV view[J]. Computer Engineering and Applications, 2024, 60(2): 191-199. (in Chinese)
DOI |
|
[14] | WANG G, CHEN Y F, AN P, et al. UAV-YOLOv8: a small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios[J]. Sensors, 2023, 23(16): 7190. |
[15] | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2024-04-12]. https://arxiv.org/abs/2004.10934. |
[16] | WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2020: 390-391. |
[17] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 7464-7475. |
[18] | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 2117-2125. |
[19] | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 8759-8768. |
[20] | GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. [2024-04-12]. https://arxiv.org/abs/2107.08430. |
[21] | KONG T, SUN F C, LIU H P, et al. FoveaBox: beyound anchor-based object detection[J]. IEEE Transactions on Image Processing, 2020, 29: 7389-7398. |
[22] | CHEN J R, KAO S H, HE H, et al. Run, don't walk: chasing higher FLOPS for faster neural networks[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 12021-12031. |
[23] | WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[EB/OL]. [2024-04-12]. https://arxiv.org/abs/2402.13616. |
[24] | CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 1251-1258. |
[25] | TIAN Z, SHEN C H, CHEN H, et al. FCOS: a simple and strong anchor-free object detector[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1922-1933. |
[26] | TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 10781-10790. |
[27] | YANG G Y, LEI J, ZHU Z K, et al. AFPN: asymptotic feature pyramid network for object detection[C]// 2023 IEEE International Conference on Systems, Man, and Cybernetics. New York: IEEE, 2023: 2184-2189. |
[28] | 刘子洋, 徐慧英, 朱信忠, 等. Bi-YOLO: 一种基于YOLOv8n改进的轻量化目标检测算法[J]. 计算机工程与科学, 2024, 46(8): 1444-1454. |
LIU Z Y, XU H Y, ZHU X Z, et al. Bi-YOLO: an improved lightweight object detection algorithm based on YOLOv8n[J]. Computer Engineering & Science, 2024, 46(8): 1444-1454. (in Chinese) | |
[29] |
朱强军, 胡斌, 汪慧兰, 等. 基于轻量化YOLOv8s交通标志的检测[J]. 图学学报, 2024, 45(3): 422-432.
DOI |
ZHU Q J, HU B, WANG H L, et al. Detection of traffic signs based on lightweight YOLOv8s[J]. Journal of Graphics, 2024, 45(3): 422-432. (in Chinese)
DOI |
[1] | 李琼, 考月英, 张莹, 徐沛. 面向无人机航拍图像的目标检测研究综述[J]. 图学学报, 2024, 45(6): 1145-1164. |
[2] | 李珍峰, 符世琛, 徐乐, 孟博, 张昕, 秦建军. 基于MBI-YOLOv8的煤矸石目标检测算法研究[J]. 图学学报, 2024, 45(6): 1301-1312. |
[3] | 李盛涛, 侯立群, 董亚松. 基于R-YOLOv7和MIMO-CTFNet的指针式仪表自动读数方法[J]. 图学学报, 2024, 45(6): 1313-1327. |
[4] | 胡凤阔, 叶兰, 谭显峰, 张钦展, 胡志新, 方清, 王磊, 满孝锋. 一种基于改进YOLOv8的轻量化路面病害检测算法[J]. 图学学报, 2024, 45(5): 892-900. |
[5] | 王亚茹, 冯利龙, 宋晓轲, 屈卓, 杨珂, 王乾铭, 翟永杰. TFD-YOLOv8:一种用于输电线路的异物检测方法[J]. 图学学报, 2024, 45(5): 901-912. |
[6] | 刘义艳, 郝婷楠, 贺晨, 常英杰. 基于DBBR-YOLO的光伏电池表面缺陷检测[J]. 图学学报, 2024, 45(5): 913-921. |
[7] | 吴沛宸, 袁立宁, 胡皓, 刘钊, 郭放. 基于注意力特征融合的视频异常行为检测[J]. 图学学报, 2024, 45(5): 922-929. |
[8] | 刘丽, 张起凡, 白宇昂, 黄凯烨. 结合Swin Transformer的多尺度遥感图像变化检测研究[J]. 图学学报, 2024, 45(5): 941-956. |
[9] | 章东平, 魏杨悦, 何数技, 徐云超, 胡海苗, 黄文君. 特征融合与层间传递:一种基于Anchor DETR改进的目标检测方法[J]. 图学学报, 2024, 45(5): 968-978. |
[10] | 李刚, 蔡泽浩, 孙华勋, 赵振兵. 基于改进YOLOv8与语义知识融合的金具缺陷检测方法研究[J]. 图学学报, 2024, 45(5): 979-986. |
[11] | 李建华, 韩宇, 石开铭, 张可嘉, 郭红领, 方东平, 曹佳明. 施工现场小目标工人检测方法[J]. 图学学报, 2024, 45(5): 1040-1049. |
[12] | 罗智徽, 胡海涛, 马潇峰, 程文刚. 基于同质中间模态的跨模态行人再识别方法[J]. 图学学报, 2024, 45(4): 670-682. |
[13] | 胡欣, 常娅姝, 秦皓, 肖剑, 程鸿亮. 基于改进YOLOv8和GMM图像点集匹配的双目测距方法[J]. 图学学报, 2024, 45(4): 714-725. |
[14] | 牛为华, 郭迅. 基于改进YOLOv8的船舰遥感图像旋转目标检测算法[J]. 图学学报, 2024, 45(4): 726-735. |
[15] | 曾志超, 徐玥, 王景玉, 叶元龙, 黄志开, 王欢. 基于SOE-YOLO轻量化的水面目标检测算法[J]. 图学学报, 2024, 45(4): 736-744. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||