Journal of Graphics ›› 2023, Vol. 44 ›› Issue (2): 233-240.DOI: 10.11996/JG.j.2095-302X.2023020233
Previous Articles Next Articles
					
													XIE Guo-bo(
), HE Di-xuan, HE Yu-qin, LIN Zhi-yi(
)
												  
						
						
						
					
				
Received:2022-06-05
															
							
															
							
																	Accepted:2022-08-10
															
							
																	Online:2023-04-30
															
							
																	Published:2023-05-01
															
						Contact:
								LIN Zhi-yi (1979-), lecturer, Ph.D. His main research interests cover artificial intelligence, bioinformatics, etc. E-mail:About author:XIE Guo-bo (1977-), professor, Ph.D. His main research interests cover computational intelligence and its application to remote sensing image processing, hyperspectral remote sensing, complex disease pattern mining, etc. E-mail:xiegb@gdut.edu.cn				
													Supported by:CLC Number:
XIE Guo-bo, HE Di-xuan, HE Yu-qin, LIN Zhi-yi. P-CenterNet for chimney detection in optical remote-sensing images[J]. Journal of Graphics, 2023, 44(2): 233-240.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023020233
| 参数 | 值 | 
|---|---|
| 种类 | 20 | 
| 分辨率 | 0.5~30.0 m | 
| 图像数量 | 23 463 | 
| 包含烟囱目标的图像数量 | 854 | 
| 烟囱实例 | 1 696 | 
| 像素 | 800×800 pixels | 
| 年份 | 2018 | 
Table 1 Details of DIOR dataset
| 参数 | 值 | 
|---|---|
| 种类 | 20 | 
| 分辨率 | 0.5~30.0 m | 
| 图像数量 | 23 463 | 
| 包含烟囱目标的图像数量 | 854 | 
| 烟囱实例 | 1 696 | 
| 像素 | 800×800 pixels | 
| 年份 | 2018 | 
																													Fig. 1 DIOR dataset samples ((a) Shows an image with a complex background; (b) Shows an image in which the detection object is obscured by the white smoke produced by its operation; (c) Shows an image containing detection objects of different sizes in the same image; (d) Shows an image containing an object similar to the detection object)
| 模型 | Backbone | 评价指标 | |||
|---|---|---|---|---|---|
| P (%) | R (%) | mAP0.75 (%) | FPS | ||
| Faster-RCNN | ResNet50 | 66.81 | 77.11 | 72.30 | 8.64 | 
| Yolov3 | DarkNet53 | 83.95 | 81.93 | 77.81 | 24.52 | 
| CenterNet (baseline) | ResNet50 | 88.42 | 80.96 | 75.99 | 49.92 | 
| CenterNet | PvConv-ResNet50 | 88.63 | 82.65 | 80.80 | 28.26 | 
| P-CenterNet | PvConv-ResNet50 | 93.91 | 89.16 | 89.77 | 28.21 | 
Table 2 Experimental results
| 模型 | Backbone | 评价指标 | |||
|---|---|---|---|---|---|
| P (%) | R (%) | mAP0.75 (%) | FPS | ||
| Faster-RCNN | ResNet50 | 66.81 | 77.11 | 72.30 | 8.64 | 
| Yolov3 | DarkNet53 | 83.95 | 81.93 | 77.81 | 24.52 | 
| CenterNet (baseline) | ResNet50 | 88.42 | 80.96 | 75.99 | 49.92 | 
| CenterNet | PvConv-ResNet50 | 88.63 | 82.65 | 80.80 | 28.26 | 
| P-CenterNet | PvConv-ResNet50 | 93.91 | 89.16 | 89.77 | 28.21 | 
| PyConv | MSCF | CBAM | 评价指标 | ||||
|---|---|---|---|---|---|---|---|
| P (%) | R (%) | mAP0.75 (%) | FPS | Params size (MB) | |||
| N | N | N | 88.42 | 80.96 | 75.99 | 49.92 | 124.61 | 
| Y | N | N | 88.63 | 82.65 | 80.80 | 28.69 | 121.90 | 
| Y | Y | N | 89.11 | 84.82 | 82.61 | 28.61 | 121.96 | 
| Y | N | Y | 93.89 | 88.92 | 88.93 | 28.56 | 125.92 | 
| Y | Y | Y | 93.91 | 89.16 | 89.77 | 28.21 | 125.97 | 
Table 3 Experimental results for each component
| PyConv | MSCF | CBAM | 评价指标 | ||||
|---|---|---|---|---|---|---|---|
| P (%) | R (%) | mAP0.75 (%) | FPS | Params size (MB) | |||
| N | N | N | 88.42 | 80.96 | 75.99 | 49.92 | 124.61 | 
| Y | N | N | 88.63 | 82.65 | 80.80 | 28.69 | 121.90 | 
| Y | Y | N | 89.11 | 84.82 | 82.61 | 28.61 | 121.96 | 
| Y | N | Y | 93.89 | 88.92 | 88.93 | 28.56 | 125.92 | 
| Y | Y | Y | 93.91 | 89.16 | 89.77 | 28.21 | 125.97 | 
| [1] | 任喜洋, 邓锋, 高兵, 等. 推动能源资源结构向绿色低碳转型[J]. 中国国土资源经济, 2021, 34(12): 48-54, 76. | 
| REN X Y, DENG F, GAO B, et al. Promote the transformation of energy and resource structure to green and low-carbon development[J]. Natural Resource Economics of China, 2021, 34(12): 48-54, 76. (in Chinese) | |
| [2] | DENG Q, ZHANG H P. Chimney and condensing tower detection based on FPN in high resolution remote sensing images[C]// SPIE Remote Sensing. Proc SPIE 11155, Image and Signal Processing for Remote Sensing XXV. Bellingham: SPIE, 2019: 668-674. | 
| [3] | HAN C M, LI G F, DING Y X, et al. Chimney detection based on faster R-CNN and spatial analysis methods in high resolution remote sensing images[J]. Sensors: Basel, Switzerland, 2020, 20(16): 4353. | 
| [4] | 姜志国, 张浩鹏, 姚远, 等. 一种基于遥感图像的烟囱和冷凝塔检测方法: CN108229524A[P]. 2018-06-29. | 
| JIANG Z G, ZHANG H P, YAO Y, et al. Chimney and condensing tower detection method based on remote-sensing image: CN108229524A[P]. 2018-06-29. (in Chinese) | |
| [5] |  
											 YANG J C, ZHU Y H, JIANG B, et al.  Aircraft detection in remote sensing images based on a deep residual network and Super-Vector coding[J]. Remote Sensing Letters, 2018, 9(3): 228-236. 
																							 DOI URL  | 
										
| [6] | ZHENG J B, XI Y, FENG M C, et al. Object detection based on BING in optical remote sensing images[C]// The 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. New York: IEEE Press, 2016: 504-509. | 
| [7] | LI B Y, CUI X G, BAI J. A cascade structure of aircraft detection in high resolution remote sensing images[C]// 2016 IEEE International Geoscience and Remote Sensing Symposium. New York: IEEE Press, 2016: 653-656. | 
| [8] | WANG T, CHEN Y, QIAO M N, et al. Object detection in remote sensing images based on one-class classification[C]// 2017 Chinese Automation Congress. New York: IEEE Press, 2017: 6583-6587. | 
| [9] |  
											 ZHAO Z Q, ZHENG P, XU S T, et al.  Object detection with deep learning: a review[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(11): 3212-3232. 
																							 DOI URL  | 
										
| [10] | DUAN K W, BAI S, XIE L X, et al. CenterNet: keypoint triplets for object detection[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 6568-6577. | 
| [11] |  
											 CHENG G, SI Y J, HONG H L, et al.  Cross-scale feature fusion for object detection in optical remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(3): 431-435. 
																							 DOI URL  | 
										
| [12] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2014: 580-587. | 
| [13] | GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision. New York: IEEE Press, 2015: 1440-1448. | 
| [14] |  
											 REN S Q, HE K M, GIRSHICK R, et al.  Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. 
																							 DOI PMID  | 
										
| [15] | HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2980-2988. | 
| [16] | YAO Y, JIANG Z G, ZHANG H P, et al. Chimney and condensing tower detection based on faster R-CNN in high resolution remote sensing images[C]// 2017 IEEE International Geoscience and Remote Sensing Symposium. New York: IEEE Press, 2017: 3329-3332. | 
| [17] |  
											 ZHANG H P, DENG Q. Deep learning based fossil-fuel power plant monitoring in high resolution remote sensing images: a comparative study[J]. Remote Sensing, 2019, 11(9): 1117. 
																							 DOI URL  | 
										
| [18] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788. | 
| [19] | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2022-05-27]. https://arxiv.org/abs/1804.02767. | 
| [20] | LAW H, DENG J. CornerNet: detecting objects as paired keypoints[M]//Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018: 765-781. | 
| [21] | DUTA I C, LIU L, ZHU F, et al. Pyramidal convolution: rethinking convolutional neural networks for visual recognition[EB/OL]. (2020-06-20) [2022-05-27]. https://arxiv.org/abs/2006.11538. | 
| [22] | NIE J, ANWER R M, CHOLAKKAL H, et al. Enriched feature guided refinement network for object detection[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 9536-9545. | 
| [23] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]// Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. | 
| [24] |  
											 LI K, WAN G, CHENG G, et al.  Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307. 
																							 DOI URL  | 
										
| [25] |  
											 ZHANG G J, LU S J, ZHANG W. CAD-net: a context-aware detection network for objects in remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 10015-10024. 
																							 DOI URL  | 
										
| [1] | 
														LI Li-xia , WANG Xin, WANG Jun , ZHANG You-yuan. 
														
															 
	Small object detection algorithm in UAV image based on
feature fusion and attention mechanism
 
														[J]. Journal of Graphics, 2023, 44(4): 658-666.
													 | 
												
| [2] | 
														LI Xin , PU Yuan-yuan, ZHAO Zheng-peng , XU Dan , QIAN Wen-hua. 
														
															 
	Content semantics and style features match consistent
artistic style transfer
 
														[J]. Journal of Graphics, 2023, 44(4): 699-709.
													 | 
												
| [3] | 
														YU Wei-qun, LIU Jia-tao, ZHANG Ya-ping. 
														
															 
	Monocular depth estimation based on Laplacian
pyramid with attention fusion
 
														[J]. Journal of Graphics, 2023, 44(4): 728-738.
													 | 
												
| [4] | HU Xin, ZHOU Yun-qiang, XIAO Jian, YANG Jie. Surface defect detection of threaded steel based on improved YOLOv5 [J]. Journal of Graphics, 2023, 44(3): 427-437. | 
| [5] | HAO Peng-fei, LIU Li-qun, GU Ren-yuan. YOLO-RD-Apple orchard heterogenous image obscured fruit detection model [J]. Journal of Graphics, 2023, 44(3): 456-464. | 
| [6] | LI Yu, YAN Tian-tian, ZHOU Dong-sheng, WEI Xiao-peng. Natural scene text detection based on attention mechanism and deep multi-scale feature fusion [J]. Journal of Graphics, 2023, 44(3): 473-481. | 
| [7] | XIAO Tian-xing, WU Jing-jing. Segmentation of laser coding characters based on residual and feature-grouped attention [J]. Journal of Graphics, 2023, 44(3): 482-491. | 
| [8] | WU Wen-huan, ZHANG Hao-kun. Semantic segmentation with fusion of spatial criss-cross and channel multi-head attention [J]. Journal of Graphics, 2023, 44(3): 531-539. | 
| [9] | XIONG Ju-ju, XU Yang, FAN Run-ze, SUN Shao-cong. Flowers recognition based on lightweight visual transformer [J]. Journal of Graphics, 2023, 44(2): 271-279. | 
| [10] | CHENG Lang, JING Chao. X-ray image rotating object detection based on improved YOLOv7 [J]. Journal of Graphics, 2023, 44(2): 324-334. | 
| [11] | CAO Yi-qin, WU Ming-lin, XU Lu. Steel surface defect detection based on improved YOLOv5 algorithm [J]. Journal of Graphics, 2023, 44(2): 335-345. | 
| [12] | ZHANG Wei-kang, SUN Hao, CHEN Xin-kai, LI Xu-bing, YAO Li-gang, DONG Hui. Research on weed detection in vegetable seedling fields based on the improved YOLOv5 intelligent weeding robot [J]. Journal of Graphics, 2023, 44(2): 346-356. | 
| [13] | LI Xiao-bo , LI Yang-gui, GUO Ning , FAN Zhen. Mask detection algorithm based on YOLOv5 integrating attention mechanism [J]. Journal of Graphics, 2023, 44(1): 16-25. | 
| [14] | SHAO Wen-bin, LIU Yu-jie, SUN Xiao-rui, LI Zong-min . Cross modality person re-identification based on residual enhanced attention [J]. Journal of Graphics, 2023, 44(1): 33-40. | 
| [15] | 
														SHAN Fang-mei , WANG Meng-wen , LI Min. 
														
															 
	Multi-scale convolutional neural network incorporating attention
mechanism for intestinal polyp segmentation
 
														[J]. Journal of Graphics, 2023, 44(1): 50-58.
													 | 
												
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||