Journal of Graphics ›› 2024, Vol. 45 ›› Issue (4): 736-744.DOI: 10.11996/JG.j.2095-302X.2024040736
• Image Processing and Computer Vision • Previous Articles Next Articles
ZENG Zhichao1(), XU Yue1, WANG Jingyu1, YE Yuanlong1, HUANG Zhikai1(
), WANG Huan2
Received:
2024-01-15
Accepted:
2024-04-12
Online:
2024-08-31
Published:
2024-09-03
Contact:
HUANG Zhikai
About author:
First author contact:ZENG Zhichao (1998-), master student. His main research interests cover graphic image processing and object detection. E-mail:z2c0828@163.com
Supported by:
CLC Number:
ZENG Zhichao, XU Yue, WANG Jingyu, YE Yuanlong, HUANG Zhikai, WANG Huan. A water surface target detection algorithm based on SOE-YOLO lightweight network[J]. Journal of Graphics, 2024, 45(4): 736-744.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024040736
配置环境 | 版本型号 |
---|---|
操作系统 | Windows10 |
深度学习框架 | Pytorch 1.13.1 |
计算框架 | CUDA 11.1 |
语言 | Python3.8 |
CPU | AMD Ryzen 7 3700X 8-Core Processor |
GPU | Nvidia GeForce RTX 3090Ti |
Table 1 Experimental platform and setup
配置环境 | 版本型号 |
---|---|
操作系统 | Windows10 |
深度学习框架 | Pytorch 1.13.1 |
计算框架 | CUDA 11.1 |
语言 | Python3.8 |
CPU | AMD Ryzen 7 3700X 8-Core Processor |
GPU | Nvidia GeForce RTX 3090Ti |
类别 | 图片/张 | 实例/个 |
---|---|---|
Boat | 4 325 | 8 179 |
Ship | 1 832 | 3 423 |
Ball | 652 | 2 609 |
Bridge | 1 827 | 2 014 |
Rock | 696 | 1 540 |
Person | 357 | 695 |
Rubbish | 461 | 669 |
Mast | 177 | 354 |
Buoy | 153 | 167 |
Platform | 480 | 614 |
Harbor | 1 211 | 1 224 |
Tree | 72 | 219 |
Grass | 103 | 110 |
Animal | 50 | 94 |
Table 2 Dataset category
类别 | 图片/张 | 实例/个 |
---|---|---|
Boat | 4 325 | 8 179 |
Ship | 1 832 | 3 423 |
Ball | 652 | 2 609 |
Bridge | 1 827 | 2 014 |
Rock | 696 | 1 540 |
Person | 357 | 695 |
Rubbish | 461 | 669 |
Mast | 177 | 354 |
Buoy | 153 | 167 |
Platform | 480 | 614 |
Harbor | 1 211 | 1 224 |
Tree | 72 | 219 |
Grass | 103 | 110 |
Animal | 50 | 94 |
模型 | mAP@0.5/% | mAP@0.5~0.95/% | Params/M | FLOPs/G | FPS |
---|---|---|---|---|---|
YOLOv8n(baseline) | 77.5 | 45.6 | 3.2 | 8.1 | 60.24 |
YOLOv8+Slim-Neck | 79.2 | 45.6 | 2.8 | 7.3 | 65.05 |
YOLOv8+ODConv | 78.8 | 46.0 | 3.0 | 7.2 | 63.51 |
YOLOv8+ODConv+Slim-Neck | 79.2 | 47.1 | 2.6 | 6.6 | 68.50 |
Table 3 Lightweight ablation test results
模型 | mAP@0.5/% | mAP@0.5~0.95/% | Params/M | FLOPs/G | FPS |
---|---|---|---|---|---|
YOLOv8n(baseline) | 77.5 | 45.6 | 3.2 | 8.1 | 60.24 |
YOLOv8+Slim-Neck | 79.2 | 45.6 | 2.8 | 7.3 | 65.05 |
YOLOv8+ODConv | 78.8 | 46.0 | 3.0 | 7.2 | 63.51 |
YOLOv8+ODConv+Slim-Neck | 79.2 | 47.1 | 2.6 | 6.6 | 68.50 |
模型 | mAP@0.5/% | mAP@0.5~0.95/% | Params/M | FLOPs/G | FPS |
---|---|---|---|---|---|
YOLOv8n(baseline) | 77.5 | 45.6 | 3.1 | 8.1 | 60.24 |
YOLOv8n+CA | 77.7 | 45.3 | 2.8 | 7.4 | 54.64 |
YOLOv8n+SE | 76.2 | 44.5 | 3.0 | 8.0 | 55.13 |
YOLOv8n+NAM | 78.5 | 45.8 | 3.0 | 8.1 | 56.82 |
YOLOv8n+SimAM | 78.0 | 45.3 | 3.0 | 8.1 | 58.14 |
YOLOv8n+ECA | 78.7 | 45.6 | 3.0 | 8.1 | 52.91 |
YOLOv8n+EMA | 78.8 | 45.7 | 3.0 | 8.3 | 55.87 |
YOLOv8+ODConv+Slim-Neck | 79.2 | 47.1 | 2.6 | 6.6 | 68.50 |
YOLOv8+ODConv+Slim-Neck+ECA | 79.1 | 45.7 | 2.8 | 6.4 | 61.00 |
YOLOv8+ODConv+Slim-Neck+NAM | 78.6 | 45.8 | 2.8 | 6.4 | 63.86 |
YOLOv8+ODConv+Slim-Neck+C2f_EMA | 78.3 | 45.6 | 2.8 | 6.5 | 65.52 |
YOLOv8+ODConv+Slim-Neck+EMA(本文) | 79.9 | 47.2 | 2.8 | 6.6 | 64.25 |
Table 4 Comparison of attention mechanisms with experimental results
模型 | mAP@0.5/% | mAP@0.5~0.95/% | Params/M | FLOPs/G | FPS |
---|---|---|---|---|---|
YOLOv8n(baseline) | 77.5 | 45.6 | 3.1 | 8.1 | 60.24 |
YOLOv8n+CA | 77.7 | 45.3 | 2.8 | 7.4 | 54.64 |
YOLOv8n+SE | 76.2 | 44.5 | 3.0 | 8.0 | 55.13 |
YOLOv8n+NAM | 78.5 | 45.8 | 3.0 | 8.1 | 56.82 |
YOLOv8n+SimAM | 78.0 | 45.3 | 3.0 | 8.1 | 58.14 |
YOLOv8n+ECA | 78.7 | 45.6 | 3.0 | 8.1 | 52.91 |
YOLOv8n+EMA | 78.8 | 45.7 | 3.0 | 8.3 | 55.87 |
YOLOv8+ODConv+Slim-Neck | 79.2 | 47.1 | 2.6 | 6.6 | 68.50 |
YOLOv8+ODConv+Slim-Neck+ECA | 79.1 | 45.7 | 2.8 | 6.4 | 61.00 |
YOLOv8+ODConv+Slim-Neck+NAM | 78.6 | 45.8 | 2.8 | 6.4 | 63.86 |
YOLOv8+ODConv+Slim-Neck+C2f_EMA | 78.3 | 45.6 | 2.8 | 6.5 | 65.52 |
YOLOv8+ODConv+Slim-Neck+EMA(本文) | 79.9 | 47.2 | 2.8 | 6.6 | 64.25 |
模型 | map@0.5/% | map@0.5~0.95/% | Params/M | FLOPs/G | FPS |
---|---|---|---|---|---|
SSD | 44.8 | - | 26.3 | 31.1 | 32.40 |
Faster R-CNN | 34.1 | - | 41.2 | 41.2 | 30.60 |
YOLOv3 | 56.8 | 27.3 | 61.6 | 27.9 | 40.50 |
YOLOv5s | 80.1 | 43.0 | 7.0 | 16.6 | 57.13 |
YOLOv8n(baseline) | 77.5 | 45.6 | 3.2 | 8.1 | 60.24 |
YOLOv8-ShuffleNetV2 | 74.0 | 41.8 | 1.9 | 5.2 | 77.17 |
YOLOv8-MobileNetV3 | 75.1 | 41.6 | 2.3 | 5.7 | 71.81 |
YOLOv8-Vanillnet | 73.5 | 40.8 | 2.0 | 5.7 | 70.92 |
Bi-YOLO | 64.8 | 36.5 | 2.9 | 63.5 | 42.37 |
RT-DETR-r18 | 70.2 | 40.1 | 20.0 | 60.0 | 55.30 |
YOLOv7-tiny | 70.5 | 37.0 | 4.2 | 7.0 | 53.47 |
SOE-YOLO(本文) | 79.9 | 47.2 | 2.8 | 6.6 | 64.25 |
Table 5 Compare the experimental results with other models
模型 | map@0.5/% | map@0.5~0.95/% | Params/M | FLOPs/G | FPS |
---|---|---|---|---|---|
SSD | 44.8 | - | 26.3 | 31.1 | 32.40 |
Faster R-CNN | 34.1 | - | 41.2 | 41.2 | 30.60 |
YOLOv3 | 56.8 | 27.3 | 61.6 | 27.9 | 40.50 |
YOLOv5s | 80.1 | 43.0 | 7.0 | 16.6 | 57.13 |
YOLOv8n(baseline) | 77.5 | 45.6 | 3.2 | 8.1 | 60.24 |
YOLOv8-ShuffleNetV2 | 74.0 | 41.8 | 1.9 | 5.2 | 77.17 |
YOLOv8-MobileNetV3 | 75.1 | 41.6 | 2.3 | 5.7 | 71.81 |
YOLOv8-Vanillnet | 73.5 | 40.8 | 2.0 | 5.7 | 70.92 |
Bi-YOLO | 64.8 | 36.5 | 2.9 | 63.5 | 42.37 |
RT-DETR-r18 | 70.2 | 40.1 | 20.0 | 60.0 | 55.30 |
YOLOv7-tiny | 70.5 | 37.0 | 4.2 | 7.0 | 53.47 |
SOE-YOLO(本文) | 79.9 | 47.2 | 2.8 | 6.6 | 64.25 |
[1] | 侯瑞超, 唐智诚, 王博, 等. 水面无人艇智能化技术的发展现状和趋势[J]. 中国造船, 2020, 61(S1): 211-220. |
HOU R C, TANG Z C, WANG B, et al. Development status and trend of intelligent technology for surface unmanned boat[J]. Shipbuilding of China, 2020, 61(S1): 211-220 (in Chinese). | |
[2] | 罗逸豪, 孙创, 邵成, 等. 基于深度学习的水面无人艇目标检测算法综述[J]. 数字海洋与水下攻防, 2022, 5(6): 524-538. |
LUO Y H, SUN C, SHAO C, et al. Review on object detection algorithm for unmanned surface vehicle based on deep learning[J]. Digital Ocean & Underwater Warfare, 2022, 5(6): 524-538 (in Chinese). | |
[3] |
盛明伟, 李俊, 秦洪德, 等. 基于改进YOLOv3的船舶目标检测算法[J]. 导航与控制, 2021, 20(2): 95-109.
DOI |
SHENG M W, LI J, QIN H D, et al. Ship target detection algorithm based on the improved YOLOv3[J]. Navigation and Control, 2021, 20(2): 95-109 (in Chinese). | |
[4] | 程亮, 杨渊, 张云飞, 等. 面向无人艇智能感知的水上目标识别算法研究[J]. 电子测量与仪器学报, 2021, 35(9): 99-104. |
CHENG L, YANG Y, ZHANG Y F, et al. Research on water target recognition algorithm for unmanned surface vessel[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(9): 99-104 (in Chinese). | |
[5] | 冯辉, 郭俊东, 徐海祥. 面向精准目标定位的水面目标检测算法[J]. 华中科技大学学报: 自然科学版, 2023, 51(10): 38-43. |
FENG H, GUO J D, XU H X. Water surface object detection algorithm for accurate object location[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2023, 51(10): 38-43 (in Chinese). | |
[6] | LIN F, HOU T, JIN Q, et al. Improved YOLO based detection algorithm for floating debris in waterway[EB/OL]. [2023-11-20]. https://doi.org/10.3390/e23091111. |
[7] | 刘子洋, 徐慧英, 朱信忠, 等. Bi-YOLO: 一种基于YOLOv8改进的轻量化目标检测算法[EB/OL]. [2023-12-20]. https://link.cnki.net/urlid/43.1258.TP.20231107.1657.002. |
LIU Z Y, XU H Y, ZHU X Z, et al. Bi-YOLO: an improved lightweight object detection algorithm based on YOLOv8[EB/OL]. [2023-11-20]. https://link.cnki.net/urlid/43.1258.TP.20231107.1657.002 (in Chinese). | |
[8] | HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2023-11-20]. https://arxiv.orgabs/1704.04861. |
[9] | MA N, ZHANG X, ZHENG H, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[EB/OL]. [2023-11-20]. https://arxiv.org/abs/1807.11164. |
[10] | CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 1800-1807. |
[11] | LI H L, LI J, WEI H B, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[EB/OL]. [2023-11-20]. http://arxiv.org/abs/2206.02424. |
[12] | YANG B, BENDER G, LE Q V, et al. CondConv: conditionally parameterized convolutions for efficient inference[EB/OL]. [2023-10-20]. http://arxiv.org/abs/1904.04971. |
[13] | ZHANG Y K, ZHANG J, WANG Q, et al. DyNet: dynamic convolution for accelerating convolutional neural networks[EB/OL]. [2023-10-20]. http://arxiv.org/abs/2004.10694. |
[14] | LI C, ZHOU A J, YAO A B. Omni-dimensional dynamic convolution[EB/OL]. [2023-10-20]. http://arxiv.org/abs/2209.07947. |
[15] | 丘锐聪, 周海峰, 陈颖, 等. 基于轻量化YOLOv7-tiny的船舶目标检测算法[EB/OL]. [2023-10-20]. https://link.cnki.net/urlid/21.1360.U.20231129.1740.002. |
QIU R C, ZHOU H F, CHEN Y, et al. Ship target detection algorithm based on lightweight YOLOv7-tiny[EB/OL]. [2023-12-20]. https://link.cnki.net/urlid/21.1360.U.20231129.1740.002 (in Chinese). | |
[16] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7132-7141. |
[17] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// European Conference on Computer Vision. Cham: Springer, 2018: 3-19. |
[18] | OUYANG D L, HE S, ZHANG G Z, et al. Efficient multi-scale attention module with cross-spatial learning[C]// ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing. New York: IEEE Press, 2023: 1-5. |
[19] | ZHOU Z G, SUN J E, YU J B, et al. An image-based benchmark dataset and a novel object detector for water surface object detection[J]. Frontiers in Neurorobotics, 2021, 15: 723336. |
[20] | HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 13708-13717. |
[21] | YANG L X, ZHANG R Y, LI L D, et al. SimAM: a Simple, parameter-free attention module for convolutional neural networks[EB/OL]. [2023-12-20]. https://api.semanticscholar.org/CorpusID:235825945. |
[22] | LIU Y C, SHAO Z R, TENG Y Y, et al. NAM: normalization- based attention module[EB/OL]. [2023-12-20]. http://arxiv.org/abs/2111.12419. |
[23] | WANG Q L, WU B G, ZHU P F, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 11531-11539. |
[24] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[25] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]// European Conference on Computer Vision. Cham: Springer, 2016: 21-37. |
[26] | ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[EB/OL]. [2023-10-20]. http://arxiv.org/abs/2304.08069. |
[27] | CHEN H T, WANG Y H, GUO J Y, et al. VanillaNet: the power of minimalism in deep learning[EB/OL]. [2023-10-20]. http://arxiv.org/abs/2305.12972. |
[1] | HU Fengkuo, YE Lan, TAN Xianfeng, ZHANG Qinzhan, HU Zhixin, FANG Qing, WANG Lei, MAN Xiaofeng. A refined YOLOv8-based algorithm for lightweight pavement disease detection [J]. Journal of Graphics, 2024, 45(5): 892-900. |
[2] |
WANG Yaru, FENG Lilong, SONG Xiaoke, QU Zhuo, YANG Ke, WANG Qianming, ZHAI Yongjie .
TFD-YOLOv8: a transmission line foreign object detection method
[J]. Journal of Graphics, 2024, 45(5): 901-912.
|
[3] | LIU Yiyan, HAO Tingnan, HE Chen, CHANG Yingjie. Photovoltaic cell surface defect detection based on DBBR-YOLO [J]. Journal of Graphics, 2024, 45(5): 913-921. |
[4] | LI Gang, CAI Zehao, SUN Huaxun, ZHAO Zhenbing. Research on defect detection of transmission line fittings based on improved YOLOv8 and semantic knowledge fusion [J]. Journal of Graphics, 2024, 45(5): 979-986. |
[5] | HU Xin, CHANG Yashu, QIN Hao, XIAO Jian, CHENG Hongliang. Binocular ranging method based on improved YOLOv8 and GMM image point set matching [J]. Journal of Graphics, 2024, 45(4): 714-725. |
[6] | NIU Weihua, GUO Xun. Rotating target detection algorithm in ship remote sensing images based on YOLOv8 [J]. Journal of Graphics, 2024, 45(4): 726-735. |
[7] | WU Bing, TIAN Ying. Research on multi-scale road damage detection algorithm based on attention mechanism [J]. Journal of Graphics, 2024, 45(4): 770-778. |
[8] | ZHAO Lei, LI Dong, FANG Jiandong, CAO Qi. Improved YOLO object detection algorithm for traffic signs [J]. Journal of Graphics, 2024, 45(4): 779-790. |
[9] | ZHU Qiangjun, HU Bin, WANG Huilan, WANG Yang. Detection of traffic signs based on lightweight YOLOv8s [J]. Journal of Graphics, 2024, 45(3): 422-432. |
[10] | CUI Kebin, JIAO Jingyi. Steel surface defect detection algorithm based on MCB-FAH-YOLOv8 [J]. Journal of Graphics, 2024, 45(1): 112-125. |
[11] | WANG Da-fu, WANG Jing, SHI Yu-kai, DENG Zhi-wen, JIA Zhi-yong. Research on image privacy detection based on deep transfer learning [J]. Journal of Graphics, 2023, 44(6): 1112-1120. |
[12] | GAO Ang, LIANG Xing-zhu, XIA Chen-xing, ZHANG Chun-jiong. A dense pedestrian detection algorithm with improved YOLOv8 [J]. Journal of Graphics, 2023, 44(5): 890-898. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||