Journal of Graphics ›› 2025, Vol. 46 ›› Issue (1): 104-113.DOI: 10.11996/JG.j.2095-302X.2025010104
• Image Processing and Computer Vision • Previous Articles Next Articles
DONG Jiale1(), DENG Zhengjie1,2(
), LI Xiyan1, WANG Shiyun1
Received:
2024-08-22
Accepted:
2024-11-21
Online:
2025-02-28
Published:
2025-02-14
Contact:
DENG Zhengjie
About author:
First author contact:DONG Jiale (1999-), master student. Her main research interest covers security of artificial intelligence systems. E-mail:dongjiale1107@163.com
Supported by:
CLC Number:
DONG Jiale, DENG Zhengjie, LI Xiyan, WANG Shiyun. Deepfake detection method based on multi-feature fusion of frequency domain and spatial domain[J]. Journal of Graphics, 2025, 46(1): 104-113.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025010104
模型 | DF | FS | F2F | NT |
---|---|---|---|---|
文献[ | 93.40 | 92.93 | 93.51 | 79.37 |
文献[ | 91.65 | 87.03 | 90.73 | 60.57 |
文献[ | 94.50 | 84.50 | 80.30 | 74.00 |
文献[ | 97.30 | 94.20 | 81.80 | 79.40 |
文献[ | 97.80 | 93.40 | 88.70 | 84.20 |
本文模型 | 95.88 | 95.82 | 95.57 | 87.00 |
Table 1 Accuracy results on the FaceForensics++ dataset/%
模型 | DF | FS | F2F | NT |
---|---|---|---|---|
文献[ | 93.40 | 92.93 | 93.51 | 79.37 |
文献[ | 91.65 | 87.03 | 90.73 | 60.57 |
文献[ | 94.50 | 84.50 | 80.30 | 74.00 |
文献[ | 97.30 | 94.20 | 81.80 | 79.40 |
文献[ | 97.80 | 93.40 | 88.70 | 84.20 |
本文模型 | 95.88 | 95.82 | 95.57 | 87.00 |
模型 | Insight | Text2img | Inpainting | |||
---|---|---|---|---|---|---|
ACC/% | AUC | ACC/% | AUC | ACC/% | AUC | |
RECCE[ | 58.99 | 63.12 | 38.14 | 35.12 | 51.35 | 51.52 |
本文模型 | 90.21 | 96.33 | 96.50 | 99.32 | 92.81 | 97.98 |
Table 2 Results on the DFF dataset
模型 | Insight | Text2img | Inpainting | |||
---|---|---|---|---|---|---|
ACC/% | AUC | ACC/% | AUC | ACC/% | AUC | |
RECCE[ | 58.99 | 63.12 | 38.14 | 35.12 | 51.35 | 51.52 |
本文模型 | 90.21 | 96.33 | 96.50 | 99.32 | 92.81 | 97.98 |
划分方式 | DF | FS | F2F | NT |
---|---|---|---|---|
能量 | 95.73 | 95.26 | 95.36 | 86.05 |
信息熵 | 95.08 | 95.27 | 95.29 | 85.61 |
平均 | 95.34 | 95.36 | 95.16 | 85.27 |
动态 | 95.88 | 95.82 | 95.57 | 87.00 |
Table 3 Comparison of experimental accuracy on different frequency domain partitioning methods/%
划分方式 | DF | FS | F2F | NT |
---|---|---|---|---|
能量 | 95.73 | 95.26 | 95.36 | 86.05 |
信息熵 | 95.08 | 95.27 | 95.29 | 85.61 |
平均 | 95.34 | 95.36 | 95.16 | 85.27 |
动态 | 95.88 | 95.82 | 95.57 | 87.00 |
划分方式 | DF | FS | F2F | NT |
---|---|---|---|---|
能量 | 99.33 | 99.34 | 99.14 | 93.58 |
信息熵 | 99.30 | 99.20 | 99.30 | 93.28 |
平均 | 99.37 | 99.25 | 99.23 | 93.94 |
动态 | 99.39 | 99.34 | 99.33 | 94.66 |
Table 4 Comparison of experimental AUC values on different frequency domain partitioning methods/%
划分方式 | DF | FS | F2F | NT |
---|---|---|---|---|
能量 | 99.33 | 99.34 | 99.14 | 93.58 |
信息熵 | 99.30 | 99.20 | 99.30 | 93.28 |
平均 | 99.37 | 99.25 | 99.23 | 93.94 |
动态 | 99.39 | 99.34 | 99.33 | 94.66 |
块大小 | DF | FS | F2F | NT |
---|---|---|---|---|
80×80 | 93.47 | 93.58 | 93.13 | 83.02 |
40×40 | 94.72 | 94.29 | 94.39 | 83.90 |
20×20 | 94.88 | 94.82 | 95.08 | 85.61 |
10×10 | 95.55 | 94.97 | 95.16 | 86.42 |
本文模型 | 95.88 | 95.82 | 95.57 | 87.00 |
Table 5 Comparison of experimental accuracy on different scale partitioning methods in the spatial domain module/%
块大小 | DF | FS | F2F | NT |
---|---|---|---|---|
80×80 | 93.47 | 93.58 | 93.13 | 83.02 |
40×40 | 94.72 | 94.29 | 94.39 | 83.90 |
20×20 | 94.88 | 94.82 | 95.08 | 85.61 |
10×10 | 95.55 | 94.97 | 95.16 | 86.42 |
本文模型 | 95.88 | 95.82 | 95.57 | 87.00 |
方法 | FaceForensis++ | Celeb_DF |
---|---|---|
Two-stream[ | 70.10 | 53.83 |
Meso4[ | 84.70 | 54.80 |
DSP-FWA[ | 93.00 | 64.60 |
Capsule[ | 96.60 | 57.50 |
Two Branch[ | 93.18 | 73.41 |
SMIL[ | 96.80 | 56.30 |
本文模型 | 97.19 | 73.81 |
Table 6 AUC results across different datasets for various methods
方法 | FaceForensis++ | Celeb_DF |
---|---|---|
Two-stream[ | 70.10 | 53.83 |
Meso4[ | 84.70 | 54.80 |
DSP-FWA[ | 93.00 | 64.60 |
Capsule[ | 96.60 | 57.50 |
Two Branch[ | 93.18 | 73.41 |
SMIL[ | 96.80 | 56.30 |
本文模型 | 97.19 | 73.81 |
Fig. 7 Interpretability analysis results of the baseline model and the model proposed in this paper ((a) Original image; (b) Baseline model; (c) Ours)
模型 | 空域 | 频域 | 融合 | DF | FS | F2F | NT |
---|---|---|---|---|---|---|---|
1 | √ | - | - | 95.41 | 95.08 | 95.01 | 86.14 |
2 | - | √ | - | 95.54 | 95.76 | 95.13 | 85.35 |
3 | √ | √ | - | 95.50 | 95.80 | 95.35 | 86.57 |
4 | √ | √ | √ | 95.88 | 95.82 | 95.57 | 87.00 |
Table 7 Ablation experiment results/%
模型 | 空域 | 频域 | 融合 | DF | FS | F2F | NT |
---|---|---|---|---|---|---|---|
1 | √ | - | - | 95.41 | 95.08 | 95.01 | 86.14 |
2 | - | √ | - | 95.54 | 95.76 | 95.13 | 85.35 |
3 | √ | √ | - | 95.50 | 95.80 | 95.35 | 86.57 |
4 | √ | √ | √ | 95.88 | 95.82 | 95.57 | 87.00 |
[1] | WANG B, HUANG L Q, HUANG T Q, et al. Two-stream Xception structure based on feature fusion for DeepFake detection[J]. International Journal of Computational Intelligence Systems, 2023, 16(1): 134. |
[2] | LIU D C, CHEN T, PENG C L, et al. Attention consistency refined masked frequency forgery representation for generalizing face forgery detection[EB/OL]. [2024-06-20]. https://arxiv.org/abs/2307.11438. |
[3] | LUAN T, LIANG G Q, PEI P F. Interpretable DeepFake detection based on frequency spatial transformer[J]. International Journal of Emerging Technologies and Advanced Applications, 2024, 1(2): 19-25. |
[4] | COCCOMINI D A, MESSINA N, GENNARO C, et al. Combining EfficientNet and vision transformers for video deepfake detection[C]// The 21st International Conference on Image Analysis and Processing. Cham: Springer, 2022: 219-229. |
[5] | ZHU X Y, FEI H Y, ZHANG B, et al. Face forgery detection by 3D decomposition and composition search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(7): 8342-8357. |
[6] | DURALL R, KEUPER M, PFREUNDT F J, et al. Unmasking DeepFakes with simple features[EB/OL]. [2024-06-20]. https://arxiv.org/abs/1911.00686. |
[7] | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// The 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 2672-2680. |
[8] | KINGMA D P. Auto-encoding variational Bayes[EB/OL]. [2024-06-20]. https://openreview.net/forum?id=33X9fd2-9FyZd. |
[9] | WANG S Y, WANG O, ZHANG R, et al. CNN-generated images are surprisingly easy to spot... for now[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 8692-8701. |
[10] | BAI W M, LIU Y F, ZHANG Z P, et al. AUNet: learning relations between action units for face forgery detection[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2023: 24709-24719. |
[11] | TAN M X, LE Q. EfficientNet: rethinking model scaling for convolutional neural networks[EB/OL]. [2024-06-20]. https://proceedings.mlr.press/v97/tan19a.html. |
[12] | LIANG W Y, WU Y F, WU J S, et al. FAClue: exploring frequency clues by adaptive frequency-attention for Deepfake detection[C]// 2023 42nd Chinese Control Conference. New York: IEEE Press, 2023: 7621-7626. |
[13] | AFCHAR D, NOZICK V, YAMAGISHI J, et al. MesoNet: a compact facial video forgery detection network[C]// 2018 IEEE International Workshop on Information Forensics and Security. New York: IEEE Press, 2018: 1-7. |
[14] | QIAN Y Y, YIN G J, SHENG L, et al. Thinking in frequency: face forgery detection by mining frequency-aware clues[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 86-103. |
[15] | NIRKIN Y, WOLF L, KELLER Y, et al. DeepFake detection based on discrepancies between faces and their context[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(10): 6111-6121. |
[16] | LIN K H, HAN W H, LI S D, et al. IR-Capsule: two-stream network for face forgery detection[J]. Cognitive Computation, 2023, 15(1): 13-22. |
[17] | JIN X, WU N, JIANG Q, et al. A dual descriptor combined with frequency domain reconstruction learning for face forgery detection in deepfake videos[J]. Forensic Science International: Digital Investigation, 2024, 49: 301747. |
[18] | SONG H X, HUANG S Y, DONG Y P, et al. Robustness and generalizability of deepfake detection: a study with diffusion models[EB/OL]. [2024-06-20]. https://arxiv.org/abs/2309.02218. |
[19] |
翟永杰, 李佳蔚, 陈年昊, 等. 融合改进Transformer的车辆部件检测方法[J]. 图学学报, 2024, 45(5): 930-940.
DOI |
ZHAI Y J, LI J W, CHEN N H, et al. The vehicle parts detection method enhanced with Transformer integration[J]. Journal of Graphics, 2024, 45(5): 930-940 (in Chinese).
DOI |
|
[20] | ZHOU P, HAN X T, MORARIU V I, et al. Two-stream neural networks for tampered face detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2017: 1831-1839. |
[21] | LI Y Z, LYU S W. Exposing DeepFake videos by detecting face warp artifacts[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2019: 46-52. |
[22] | NGUYEN H H, YAMAGISHI J, ECHIZEN I. Capsule-forensics: using capsule networks to detect forged images and videos[C]// ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing. New York: IEEE Press, 2019: 2307-2311. |
[23] | MASI I, KILLEKAR A, MASCARENHAS R M, et al. Two-branch recurrent network for isolating deepfakes in videos[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 667-684. |
[24] | LI X D, LANG Y N, CHEN Y F, et al. Sharp multiple instance learning for DeepFake video detection[C]// The 28th ACM International Conference on Multimedia. New York: ACM, 2020: 1864-1872. |
[25] |
李滔, 胡婷, 武丹丹. 结合金字塔结构和注意力机制的单目深度估计[J]. 图学学报, 2024, 45(3): 454-463.
DOI |
LI T, HU T, WU D D. Monocular depth estimation combining pyramid structure and attention mechanism[J]. Journal of Graphics, 2024, 45(3): 454-463 (in Chinese).
DOI |
[1] | LU Yang, CHEN Linhui, JIANG Xiaoheng, XU Mingliang. SDENet: a synthetic defect data evaluation network based on multi-scale attention quality perception [J]. Journal of Graphics, 2025, 46(1): 94-103. |
[2] | YAN Jianhong, RAN Tongxiao. Lightweight UAV image target detection algorithm based on YOLOv8 [J]. Journal of Graphics, 2024, 45(6): 1328-1337. |
[3] | WU Peichen, YUAN Lining, HU Hao, LIU Zhao, GUO Fang. Video anomaly detection based on attention feature fusion [J]. Journal of Graphics, 2024, 45(5): 922-929. |
[4] | LIU Li, ZHANG Qifan, BAI Yuang, HUANG Kaiye. Research on multi-scale remote sensing image change detection using Swin Transformer [J]. Journal of Graphics, 2024, 45(5): 941-956. |
[5] | ZHANG Dongping, WEI Yangyue, HE Shuji, XU Yunchao, HU Haimiao, HUANG Wenjun. Feature fusion and inter-layer transmission: an improved object detection method based on Anchor DETR [J]. Journal of Graphics, 2024, 45(5): 968-978. |
[6] | LUO Zhihui, HU Haitao, MA Xiaofeng, CHENG Wengang. A network based on the homogeneous middle modality for cross-modality person re-identification [J]. Journal of Graphics, 2024, 45(4): 670-682. |
[7] | NIU Weihua, GUO Xun. Rotating target detection algorithm in ship remote sensing images based on YOLOv8 [J]. Journal of Graphics, 2024, 45(4): 726-735. |
[8] | AI Liefu, TAO Yong, JIANG Changyu. Orthogonal fusion image descriptor based on global attention [J]. Journal of Graphics, 2024, 45(3): 472-481. |
[9] | CUI Kebin, JIAO Jingyi. Steel surface defect detection algorithm based on MCB-FAH-YOLOv8 [J]. Journal of Graphics, 2024, 45(1): 112-125. |
[10] | ZHANG Li-yuan, ZHAO Hai-rong, HE Wei, TANG Xiong-feng. Knee cysts detection algorithm based on Mask R-CNN integrating global-local attention module [J]. Journal of Graphics, 2023, 44(6): 1183-1190. |
[11] | SHI Jia-hao, YAO Li. Video captioning based on semantic guidance [J]. Journal of Graphics, 2023, 44(6): 1191-1201. |
[12] | LI Li-xia, WANG Xin, WANG Jun, ZHANG You-yuan. Small object detection algorithm in UAV image based on feature fusion and attention mechanism [J]. Journal of Graphics, 2023, 44(4): 658-666. |
[13] | LI Xin, PU Yuan-yuan, ZHAO Zheng-peng, XU Dan, QIAN Wen-hua. Content semantics and style features match consistent artistic style transfer [J]. Journal of Graphics, 2023, 44(4): 699-709. |
[14] | LI Yu, YAN Tian-tian, ZHOU Dong-sheng, WEI Xiao-peng. Natural scene text detection based on attention mechanism and deep multi-scale feature fusion [J]. Journal of Graphics, 2023, 44(3): 473-481. |
[15] | LIU Bing, YE Cheng-xu. Fine-grained classification model of lung disease for imbalanced data [J]. Journal of Graphics, 2023, 44(3): 513-520. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||