Journal of Graphics ›› 2025, Vol. 46 ›› Issue (4): 719-726.DOI: 10.11996/JG.j.2095-302X.2025040719
• Image Processing and Computer Vision • Previous Articles Next Articles
GUO Ruidong1(
), LAN Guiwen1,2(
), FAN Donglin1, ZHONG Zhan1, XU Zirui1, REN Xinyue1
Received:2024-10-09
Revised:2025-01-07
Online:2025-08-30
Published:2025-08-11
Contact:
LAN Guiwen
About author:First author contact:GUO Ruidong (1995-), master student. His main research interests cover image processing, computer vision, etc. E-mail:13028689662@163.com
Supported by:CLC Number:
GUO Ruidong, LAN Guiwen, FAN Donglin, ZHONG Zhan, XU Zirui, REN Xinyue. An object detection algorithm for powerline inspection based on the feature focus & diffusion network[J]. Journal of Graphics, 2025, 46(4): 719-726.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025040719
| 参数 | 具体配置 |
|---|---|
| 操作系统 | Windows 10专业版22H2 |
| CPU | Intel(R)Core(TM)i5-12400 |
| 内存 | 16 GB |
| GPU | NVIDIA GeForce RTX 3070 Ti |
| CUDA | 11.6 |
| Pytorch | 1.13.1 |
| 开发环境 | Pycharm |
| 编程语音 | Python 3.8.10 |
Table 1 The experimental configuration
| 参数 | 具体配置 |
|---|---|
| 操作系统 | Windows 10专业版22H2 |
| CPU | Intel(R)Core(TM)i5-12400 |
| 内存 | 16 GB |
| GPU | NVIDIA GeForce RTX 3070 Ti |
| CUDA | 11.6 |
| Pytorch | 1.13.1 |
| 开发环境 | Pycharm |
| 编程语音 | Python 3.8.10 |
| 模型 | Precision/% | Recall/% | F1 | mAP@0.50/% | mAP@0.50∶0.95/% | 训练时间/h |
|---|---|---|---|---|---|---|
| YOLOv3-tiny | 0.724 | 0.381 | 0.498 | 0.409 | 0.196 | 6.28 |
| YOLOv5n | 0.699 | 0.373 | 0.486 | 0.408 | 0.210 | 6.16 |
| YOLOv6n | 0.665 | 0.406 | 0.504 | 0.418 | 0.220 | 6.16 |
| YOLOv8n | 0.694 | 0.410 | 0.516 | 0.444 | 0.240 | 6.11 |
Table 2 The performance of the baseline algorithms
| 模型 | Precision/% | Recall/% | F1 | mAP@0.50/% | mAP@0.50∶0.95/% | 训练时间/h |
|---|---|---|---|---|---|---|
| YOLOv3-tiny | 0.724 | 0.381 | 0.498 | 0.409 | 0.196 | 6.28 |
| YOLOv5n | 0.699 | 0.373 | 0.486 | 0.408 | 0.210 | 6.16 |
| YOLOv6n | 0.665 | 0.406 | 0.504 | 0.418 | 0.220 | 6.16 |
| YOLOv8n | 0.694 | 0.410 | 0.516 | 0.444 | 0.240 | 6.11 |
| 颈部结构 | Precision/% | Recall/% | F1 | mAP@0.50/% | mAP@0.50∶0.95/% |
|---|---|---|---|---|---|
| BiFPN | 0.642 | 0.405 | 0.496 | 0.428 | 0.218 |
| EfficientRepBiPAN | 0.663 | 0.413 | 0.508 | 0.412 | 0.215 |
| HSFPN | 0.678 | 0.394 | 0.498 | 0.422 | 0.220 |
| ASF | 0.720 | 0.399 | 0.514 | 0.438 | 0.225 |
| GFPN | 0.693 | 0.411 | 0.516 | 0.433 | 0.233 |
| AFPN | 0.733 | 0.382 | 0.502 | 0.422 | 0.225 |
| SDI | 0.683 | 0.209 | 0.320 | 0.265 | 0.131 |
| FFDN | 0.720 | 0.413 | 0.524 | 0.453 | 0.232 |
Table 3 The performance of several feature-fusion networks
| 颈部结构 | Precision/% | Recall/% | F1 | mAP@0.50/% | mAP@0.50∶0.95/% |
|---|---|---|---|---|---|
| BiFPN | 0.642 | 0.405 | 0.496 | 0.428 | 0.218 |
| EfficientRepBiPAN | 0.663 | 0.413 | 0.508 | 0.412 | 0.215 |
| HSFPN | 0.678 | 0.394 | 0.498 | 0.422 | 0.220 |
| ASF | 0.720 | 0.399 | 0.514 | 0.438 | 0.225 |
| GFPN | 0.693 | 0.411 | 0.516 | 0.433 | 0.233 |
| AFPN | 0.733 | 0.382 | 0.502 | 0.422 | 0.225 |
| SDI | 0.683 | 0.209 | 0.320 | 0.265 | 0.131 |
| FFDN | 0.720 | 0.413 | 0.524 | 0.453 | 0.232 |
| FFDN | SPDConv | Dyhead | Precision/% | Recall/% | mAP@0.50/% | mAP@0.50∶0.95/% | F1 | FPS |
|---|---|---|---|---|---|---|---|---|
| 0.694 | 0.410 | 0.444 | 0.240 | 0.516 | 149 | |||
| √ | 0.738 | 0.420 | 0.463 | 0.236 | 0.534 | 188 | ||
| √ | 0.739 | 0.420 | 0.463 | 0.249 | 0.536 | 156 | ||
| √ | 0.736 | 0.408 | 0.446 | 0.230 | 0.524 | 132 | ||
| √ | √ | 0.732 | 0.438 | 0.478 | 0.259 | 0.548 | 136 | |
| √ | √ | 0.711 | 0.431 | 0.460 | 0.242 | 0.536 | 135 | |
| √ | √ | 0.717 | 0.422 | 0.470 | 0.243 | 0.532 | 119 | |
| √ | √ | √ | 0.767 | 0.430 | 0.482 | 0.254 | 0.552 | 119 |
Table 4 The ablation experiments
| FFDN | SPDConv | Dyhead | Precision/% | Recall/% | mAP@0.50/% | mAP@0.50∶0.95/% | F1 | FPS |
|---|---|---|---|---|---|---|---|---|
| 0.694 | 0.410 | 0.444 | 0.240 | 0.516 | 149 | |||
| √ | 0.738 | 0.420 | 0.463 | 0.236 | 0.534 | 188 | ||
| √ | 0.739 | 0.420 | 0.463 | 0.249 | 0.536 | 156 | ||
| √ | 0.736 | 0.408 | 0.446 | 0.230 | 0.524 | 132 | ||
| √ | √ | 0.732 | 0.438 | 0.478 | 0.259 | 0.548 | 136 | |
| √ | √ | 0.711 | 0.431 | 0.460 | 0.242 | 0.536 | 135 | |
| √ | √ | 0.717 | 0.422 | 0.470 | 0.243 | 0.532 | 119 | |
| √ | √ | √ | 0.767 | 0.430 | 0.482 | 0.254 | 0.552 | 119 |
| 颈部网络结构 | t | |||
|---|---|---|---|---|
| 20% | 30% | 50% | 99% | |
| PAFPN | 0.038 | 0.067 | 0.172 | 0.968 |
| FFDN | 0.064 | 0.112 | 0.228 | 0.968 |
Table 5 The high contribution area ratios on the minimum rectangle of PAFPN and FFDN
| 颈部网络结构 | t | |||
|---|---|---|---|---|
| 20% | 30% | 50% | 99% | |
| PAFPN | 0.038 | 0.067 | 0.172 | 0.968 |
| FFDN | 0.064 | 0.112 | 0.228 | 0.968 |
| [1] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2014: 580-587. |
| [2] | GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision. New York: IEEE Press, 2015: 1440-1448. |
| [3] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
| [4] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788. |
| [5] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]// The 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37. |
| [6] | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327. |
| [7] | 冯珺, 潘司晨, 赵帅, 等. 基于改进RPN的孪生小样本电力目标检测[J]. 河北科技大学学报, 2023, 44(1): 67-73. |
| FENG J, PAN S C, ZHAO S, et al. Research on few-shot power detection of Siamese network based on improved RPN[J]. Journal of Hebei University of Science and Technology, 2023, 44(1): 67-73 (in Chinese). | |
| [8] | 顾超越, 李喆, 史晋涛, 等. 基于改进Faster-RCNN的无人机巡检架空线路销钉缺陷检测[J]. 高电压技术, 2020, 46(9): 3089-3096. |
| GU C Y, LI Z, SHI J T, et al. Detection for pin defects of overhead lines by UAV patrol image based on improved faster-RCNN[J]. High Voltage Engineering, 2020, 46(9): 3089-3096 (in Chinese). | |
| [9] | 黄芹芹, 董洁, 陈玥, 等. 一种改进SSD算法的输电线路目标检测方法[J]. 电工电气, 2021(6): 51-55. |
| HUANG Q Q, DONG J, CHEN Y, et al. A transmission line target detection method with improved SSD algorithm[J]. Electrotechnics Electric, 2021(6): 51-55 (in Chinese). | |
| [10] |
郝帅, 赵新生, 马旭, 等. 基于TR-YOLOv5的输电线路多类缺陷目标检测方法[J]. 图学学报, 2023, 44(4): 667-676.
DOI |
|
HAO S, ZHAO X S, MA X, et al. Multi-class defect target detection method for transmission lines based on TR-YOLOv5[J]. Journal of Graphics, 2023, 44(4): 667-676 (in Chinese).
DOI |
|
| [11] |
李利霞, 王鑫, 王军, 等. 基于特征融合与注意力机制的无人机图像小目标检测算法[J]. 图学学报, 2023, 44(4): 658-666.
DOI |
| LI L X, WANG X, WANG J, et al. Small object detection algorithm in UAV image based on feature fusion and attention mechanism[J]. Journal of Graphics, 2023, 44(4): 658-666 (in Chinese). | |
| [12] |
苏凯第, 赵巧娥. 基于YOLOv5算法的无人机电力巡检快速图像识别[J]. 电力科学与工程, 2022, 38(4): 43-48.
DOI |
|
SU K D, ZHAO Q E. Fast image recognition of UAV power inspection based on YOLOv5 algorithm[J]. Electric Power Science and Engineering, 2022, 38(4): 43-48 (in Chinese).
DOI |
|
| [13] |
奉志强, 谢志军, 包正伟, 等. 基于改进YOLOv5的无人机实时密集小目标检测算法[J]. 航空学报, 2023, 44(7): 327106.
DOI |
| FENG Z Q, XIE Z J, BAO Z W, et al. Real-time dense small object detection algorithm for UAV based on improved YOLOv5[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(7): 327106 (in Chinese). | |
| [14] | 冯辉, 蒋成鑫, 徐海祥, 等. 基于多特征聚合的水面遮挡目标检测算法[J]. 华中科技大学学报(自然科学版), 2024, 52(4): 76-81. |
| FENG H, JIANG C X, XU H X, et al. Multi feature fusion-based water occlusion object detection algorithm[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52(4): 76-81 (in Chinese). | |
| [15] | HUANG H Q, LAN G W, WEI J, et al. TLI-YOLOv5: a lightweight object detection framework for transmission line inspection by unmanned aerial vehicle[J]. Electronics, 2023, 12(15): 3340. |
| [16] |
翟永杰, 郭聪彬, 王乾铭, 等. 基于隐含空间知识融合的输电线路多金具检测方法[J]. 图学学报, 2023, 44(5): 918-927.
DOI |
| ZHAI Y J, GUO C B, WANG Q M, et al. Multi-fitting detection method for transmission lines based on implicit spatial knowledge fusion[J]. Journal of Graphics, 2023, 44(5): 918-927 (in Chinese). | |
| [17] | 冯欣, 胡成杭. 一种自监督掩码图像建模的遮挡目标检测方法[J]. 重庆理工大学学报(自然科学), 2024, 38(6): 186-193. |
| FENG X, HU C H. An occlusion object detection method based on self-supervised mask image modeling[J]. Journal of Chongqing University of Technology (Natural Science), 2024, 38(6): 186-193 (in Chinese). | |
| [18] | ZHAO Z B, PAN Y T, GUO G X, et al. YOLO‐AFPN: marrying YOLO and AFPN for external damage detection of transmission lines[J]. IET Generation, Transmission & Distribution, 2024, 18(9): 1935-1946. |
| [19] | YANG G Y, LEI J, ZHU Z K, et al. AFPN: asymptotic feature pyramid network for object detection[C]// 2023 IEEE International Conference on Systems, Man, and Cybernetics. New York: IEEE Press, 2023: 2184-2189. |
| [20] | DING X H, ZHANG X Y, ZHOU Y G, et al. Scaling up your kernels to 31×31: revisiting large kernel design in CNNs[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 11953-11965. |
| [21] | WANG C Y, YEH I H, LIAO H Y M. YOLOv9:learning what you want to learn using programmable gradient information[C]// The 18th European Conference on Computer Vision. Cham: Springer, 2024: 1-21. |
| [22] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 7464-7475. |
| [23] | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 8759-8768. |
| [24] | SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects[C]// European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer, 2022: 443-459. |
| [25] | DAI X Y, CHEN Y P, XIAO B, et al. Dynamic head: unifying object detection heads with attentions[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 7369-7378. |
| [1] | YAN Zhuoyue, LIU Li, FU Xiaodong, LIU Lijun, PENG Wei. Hierarchical attention spatial-temporal feature fusion algorithm for 3D human pose and shape estimation [J]. Journal of Graphics, 2025, 46(4): 746-755. |
| [2] | LIAO Guoqiong, HUANG Longjie, LI Qingxin, GU Yong, LI Haibo. Adaptive two-hand reconstruction network for monocular visible light environments [J]. Journal of Graphics, 2025, 46(4): 837-846. |
| [3] | NIU Hang, GE Xinyu, ZHAO Xiaoyu, YANG Ke, WANG Qianming, ZHAI Yongjie. Vibration damper defect detection algorithm based on improved YOLOv8 [J]. Journal of Graphics, 2025, 46(3): 532-541. |
| [4] | ZHANG Lili, YANG Kang, ZHANG Ke, WEI Wei, LI Jing, TAN Hongxin, ZHANG Xiangyu. Research on improved YOLOv8 detection algorithm for diesel vehicle emission of black smoke [J]. Journal of Graphics, 2025, 46(2): 249-258. |
| [5] | ZHAI Yongjie, WANG Luyao, ZHAO Xiaoyu, HU Zhedong, WANG Qianming, WANG Yaru. Multi-fitting detection for transmission lines based on a cascade query-position relationship method [J]. Journal of Graphics, 2025, 46(2): 288-299. |
| [6] | ZHAO Zhenbing, HAN Yu, TANG Chenkang. Cascade detection method for insulator defects in distribution lines based on improved YOLOv8 [J]. Journal of Graphics, 2025, 46(1): 1-12. |
| [7] | DONG Jiale, DENG Zhengjie, LI Xiyan, WANG Shiyun. Deepfake detection method based on multi-feature fusion of frequency domain and spatial domain [J]. Journal of Graphics, 2025, 46(1): 104-113. |
| [8] | CHENG Xudong, SHI Caijuan, GAO Weixiang, WANG Sen, DUAN Changyu, YAN Xiaodong. Consistent and unbiased teacher model research for domain adaptive object detection [J]. Journal of Graphics, 2025, 46(1): 114-125. |
| [9] | WANG Zhidong, CHEN Chenyang, LIU Xiaoming. The defect detection method for communication optical cables based on lightweight improved YOLOv8 [J]. Journal of Graphics, 2025, 46(1): 28-34. |
| [10] | YUAN Chao, ZHAO Mingxue, ZHANG Fengyi, FENG Xiaoyong, LI Bing, CHEN Rui. Point cloud feature enhanced 3D object detection in complex indoor scenes [J]. Journal of Graphics, 2025, 46(1): 59-69. |
| [11] | WANG Yang, MA Chang, HU Ming, SUN Tao, RAO Yuan, YUAN Zhenyu. Lightweight wild bat detection method based on multi-scale feature fusion [J]. Journal of Graphics, 2025, 46(1): 70-80. |
| [12] | SUN Qianlai, LIN Shaohang, LIU Dongfeng, SONG Xiaoyang, LIU Jiayao, LIU Ruizhen. Few-shot pointer meters detection method based on meta-learning [J]. Journal of Graphics, 2025, 46(1): 81-93. |
| [13] | LU Yang, CHEN Linhui, JIANG Xiaoheng, XU Mingliang. SDENet: a synthetic defect data evaluation network based on multi-scale attention quality perception [J]. Journal of Graphics, 2025, 46(1): 94-103. |
| [14] | LI Qiong, KAO Yueying, ZHANG Ying, XU Pei. Review on object detection in UAV aerial images [J]. Journal of Graphics, 2024, 45(6): 1145-1164. |
| [15] | LI Zhenfeng, FU Shichen, XU Le, MENG Bo, ZHANG Xin, QING Jianjun. Research on gangue target detection algorithm based on MBI-YOLOv8 [J]. Journal of Graphics, 2024, 45(6): 1301-1312. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||