Journal of Graphics ›› 2023, Vol. 44 ›› Issue (2): 233-240.DOI: 10.11996/JG.j.2095-302X.2023020233
Previous Articles Next Articles
XIE Guo-bo(), HE Di-xuan, HE Yu-qin, LIN Zhi-yi(
)
Received:
2022-06-05
Accepted:
2022-08-10
Online:
2023-04-30
Published:
2023-05-01
Contact:
LIN Zhi-yi (1979-), lecturer, Ph.D. His main research interests cover artificial intelligence, bioinformatics, etc. E-mail:About author:
XIE Guo-bo (1977-), professor, Ph.D. His main research interests cover computational intelligence and its application to remote sensing image processing, hyperspectral remote sensing, complex disease pattern mining, etc. E-mail:xiegb@gdut.edu.cn
Supported by:
CLC Number:
XIE Guo-bo, HE Di-xuan, HE Yu-qin, LIN Zhi-yi. P-CenterNet for chimney detection in optical remote-sensing images[J]. Journal of Graphics, 2023, 44(2): 233-240.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023020233
参数 | 值 |
---|---|
种类 | 20 |
分辨率 | 0.5~30.0 m |
图像数量 | 23 463 |
包含烟囱目标的图像数量 | 854 |
烟囱实例 | 1 696 |
像素 | 800×800 pixels |
年份 | 2018 |
Table 1 Details of DIOR dataset
参数 | 值 |
---|---|
种类 | 20 |
分辨率 | 0.5~30.0 m |
图像数量 | 23 463 |
包含烟囱目标的图像数量 | 854 |
烟囱实例 | 1 696 |
像素 | 800×800 pixels |
年份 | 2018 |
Fig. 1 DIOR dataset samples ((a) Shows an image with a complex background; (b) Shows an image in which the detection object is obscured by the white smoke produced by its operation; (c) Shows an image containing detection objects of different sizes in the same image; (d) Shows an image containing an object similar to the detection object)
模型 | Backbone | 评价指标 | |||
---|---|---|---|---|---|
P (%) | R (%) | mAP0.75 (%) | FPS | ||
Faster-RCNN | ResNet50 | 66.81 | 77.11 | 72.30 | 8.64 |
Yolov3 | DarkNet53 | 83.95 | 81.93 | 77.81 | 24.52 |
CenterNet (baseline) | ResNet50 | 88.42 | 80.96 | 75.99 | 49.92 |
CenterNet | PvConv-ResNet50 | 88.63 | 82.65 | 80.80 | 28.26 |
P-CenterNet | PvConv-ResNet50 | 93.91 | 89.16 | 89.77 | 28.21 |
Table 2 Experimental results
模型 | Backbone | 评价指标 | |||
---|---|---|---|---|---|
P (%) | R (%) | mAP0.75 (%) | FPS | ||
Faster-RCNN | ResNet50 | 66.81 | 77.11 | 72.30 | 8.64 |
Yolov3 | DarkNet53 | 83.95 | 81.93 | 77.81 | 24.52 |
CenterNet (baseline) | ResNet50 | 88.42 | 80.96 | 75.99 | 49.92 |
CenterNet | PvConv-ResNet50 | 88.63 | 82.65 | 80.80 | 28.26 |
P-CenterNet | PvConv-ResNet50 | 93.91 | 89.16 | 89.77 | 28.21 |
PyConv | MSCF | CBAM | 评价指标 | ||||
---|---|---|---|---|---|---|---|
P (%) | R (%) | mAP0.75 (%) | FPS | Params size (MB) | |||
N | N | N | 88.42 | 80.96 | 75.99 | 49.92 | 124.61 |
Y | N | N | 88.63 | 82.65 | 80.80 | 28.69 | 121.90 |
Y | Y | N | 89.11 | 84.82 | 82.61 | 28.61 | 121.96 |
Y | N | Y | 93.89 | 88.92 | 88.93 | 28.56 | 125.92 |
Y | Y | Y | 93.91 | 89.16 | 89.77 | 28.21 | 125.97 |
Table 3 Experimental results for each component
PyConv | MSCF | CBAM | 评价指标 | ||||
---|---|---|---|---|---|---|---|
P (%) | R (%) | mAP0.75 (%) | FPS | Params size (MB) | |||
N | N | N | 88.42 | 80.96 | 75.99 | 49.92 | 124.61 |
Y | N | N | 88.63 | 82.65 | 80.80 | 28.69 | 121.90 |
Y | Y | N | 89.11 | 84.82 | 82.61 | 28.61 | 121.96 |
Y | N | Y | 93.89 | 88.92 | 88.93 | 28.56 | 125.92 |
Y | Y | Y | 93.91 | 89.16 | 89.77 | 28.21 | 125.97 |
[1] | 任喜洋, 邓锋, 高兵, 等. 推动能源资源结构向绿色低碳转型[J]. 中国国土资源经济, 2021, 34(12): 48-54, 76. |
REN X Y, DENG F, GAO B, et al. Promote the transformation of energy and resource structure to green and low-carbon development[J]. Natural Resource Economics of China, 2021, 34(12): 48-54, 76. (in Chinese) | |
[2] | DENG Q, ZHANG H P. Chimney and condensing tower detection based on FPN in high resolution remote sensing images[C]// SPIE Remote Sensing. Proc SPIE 11155, Image and Signal Processing for Remote Sensing XXV. Bellingham: SPIE, 2019: 668-674. |
[3] | HAN C M, LI G F, DING Y X, et al. Chimney detection based on faster R-CNN and spatial analysis methods in high resolution remote sensing images[J]. Sensors: Basel, Switzerland, 2020, 20(16): 4353. |
[4] | 姜志国, 张浩鹏, 姚远, 等. 一种基于遥感图像的烟囱和冷凝塔检测方法: CN108229524A[P]. 2018-06-29. |
JIANG Z G, ZHANG H P, YAO Y, et al. Chimney and condensing tower detection method based on remote-sensing image: CN108229524A[P]. 2018-06-29. (in Chinese) | |
[5] |
YANG J C, ZHU Y H, JIANG B, et al. Aircraft detection in remote sensing images based on a deep residual network and Super-Vector coding[J]. Remote Sensing Letters, 2018, 9(3): 228-236.
DOI URL |
[6] | ZHENG J B, XI Y, FENG M C, et al. Object detection based on BING in optical remote sensing images[C]// The 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. New York: IEEE Press, 2016: 504-509. |
[7] | LI B Y, CUI X G, BAI J. A cascade structure of aircraft detection in high resolution remote sensing images[C]// 2016 IEEE International Geoscience and Remote Sensing Symposium. New York: IEEE Press, 2016: 653-656. |
[8] | WANG T, CHEN Y, QIAO M N, et al. Object detection in remote sensing images based on one-class classification[C]// 2017 Chinese Automation Congress. New York: IEEE Press, 2017: 6583-6587. |
[9] |
ZHAO Z Q, ZHENG P, XU S T, et al. Object detection with deep learning: a review[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(11): 3212-3232.
DOI URL |
[10] | DUAN K W, BAI S, XIE L X, et al. CenterNet: keypoint triplets for object detection[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 6568-6577. |
[11] |
CHENG G, SI Y J, HONG H L, et al. Cross-scale feature fusion for object detection in optical remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(3): 431-435.
DOI URL |
[12] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2014: 580-587. |
[13] | GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision. New York: IEEE Press, 2015: 1440-1448. |
[14] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[15] | HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2980-2988. |
[16] | YAO Y, JIANG Z G, ZHANG H P, et al. Chimney and condensing tower detection based on faster R-CNN in high resolution remote sensing images[C]// 2017 IEEE International Geoscience and Remote Sensing Symposium. New York: IEEE Press, 2017: 3329-3332. |
[17] |
ZHANG H P, DENG Q. Deep learning based fossil-fuel power plant monitoring in high resolution remote sensing images: a comparative study[J]. Remote Sensing, 2019, 11(9): 1117.
DOI URL |
[18] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788. |
[19] | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2022-05-27]. https://arxiv.org/abs/1804.02767. |
[20] | LAW H, DENG J. CornerNet: detecting objects as paired keypoints[M]//Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018: 765-781. |
[21] | DUTA I C, LIU L, ZHU F, et al. Pyramidal convolution: rethinking convolutional neural networks for visual recognition[EB/OL]. (2020-06-20) [2022-05-27]. https://arxiv.org/abs/2006.11538. |
[22] | NIE J, ANWER R M, CHOLAKKAL H, et al. Enriched feature guided refinement network for object detection[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 9536-9545. |
[23] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]// Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. |
[24] |
LI K, WAN G, CHENG G, et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307.
DOI URL |
[25] |
ZHANG G J, LU S J, ZHANG W. CAD-net: a context-aware detection network for objects in remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 10015-10024.
DOI URL |
[1] |
LI Li-xia , WANG Xin, WANG Jun , ZHANG You-yuan.
Small object detection algorithm in UAV image based on
feature fusion and attention mechanism
[J]. Journal of Graphics, 2023, 44(4): 658-666.
|
[2] |
LI Xin , PU Yuan-yuan, ZHAO Zheng-peng , XU Dan , QIAN Wen-hua.
Content semantics and style features match consistent
artistic style transfer
[J]. Journal of Graphics, 2023, 44(4): 699-709.
|
[3] |
YU Wei-qun, LIU Jia-tao, ZHANG Ya-ping.
Monocular depth estimation based on Laplacian
pyramid with attention fusion
[J]. Journal of Graphics, 2023, 44(4): 728-738.
|
[4] | HU Xin, ZHOU Yun-qiang, XIAO Jian, YANG Jie. Surface defect detection of threaded steel based on improved YOLOv5 [J]. Journal of Graphics, 2023, 44(3): 427-437. |
[5] | HAO Peng-fei, LIU Li-qun, GU Ren-yuan. YOLO-RD-Apple orchard heterogenous image obscured fruit detection model [J]. Journal of Graphics, 2023, 44(3): 456-464. |
[6] | LI Yu, YAN Tian-tian, ZHOU Dong-sheng, WEI Xiao-peng. Natural scene text detection based on attention mechanism and deep multi-scale feature fusion [J]. Journal of Graphics, 2023, 44(3): 473-481. |
[7] | XIAO Tian-xing, WU Jing-jing. Segmentation of laser coding characters based on residual and feature-grouped attention [J]. Journal of Graphics, 2023, 44(3): 482-491. |
[8] | WU Wen-huan, ZHANG Hao-kun. Semantic segmentation with fusion of spatial criss-cross and channel multi-head attention [J]. Journal of Graphics, 2023, 44(3): 531-539. |
[9] | XIONG Ju-ju, XU Yang, FAN Run-ze, SUN Shao-cong. Flowers recognition based on lightweight visual transformer [J]. Journal of Graphics, 2023, 44(2): 271-279. |
[10] | CHENG Lang, JING Chao. X-ray image rotating object detection based on improved YOLOv7 [J]. Journal of Graphics, 2023, 44(2): 324-334. |
[11] | CAO Yi-qin, WU Ming-lin, XU Lu. Steel surface defect detection based on improved YOLOv5 algorithm [J]. Journal of Graphics, 2023, 44(2): 335-345. |
[12] | ZHANG Wei-kang, SUN Hao, CHEN Xin-kai, LI Xu-bing, YAO Li-gang, DONG Hui. Research on weed detection in vegetable seedling fields based on the improved YOLOv5 intelligent weeding robot [J]. Journal of Graphics, 2023, 44(2): 346-356. |
[13] | LI Xiao-bo , LI Yang-gui, GUO Ning , FAN Zhen. Mask detection algorithm based on YOLOv5 integrating attention mechanism [J]. Journal of Graphics, 2023, 44(1): 16-25. |
[14] | SHAO Wen-bin, LIU Yu-jie, SUN Xiao-rui, LI Zong-min . Cross modality person re-identification based on residual enhanced attention [J]. Journal of Graphics, 2023, 44(1): 33-40. |
[15] |
SHAN Fang-mei , WANG Meng-wen , LI Min.
Multi-scale convolutional neural network incorporating attention
mechanism for intestinal polyp segmentation
[J]. Journal of Graphics, 2023, 44(1): 50-58.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||