Journal of Graphics ›› 2023, Vol. 44 ›› Issue (2): 324-334.DOI: 10.11996/JG.j.2095-302X.2023020324
Previous Articles Next Articles
					
													CHENG Lang1(
), JING Chao1,2,3(
)
												  
						
						
						
					
				
Received:2022-09-28
															
							
															
							
																	Accepted:2022-11-08
															
							
																	Online:2023-04-30
															
							
																	Published:2023-05-01
															
						Contact:
								JING Chao (1983-), associate professor, Ph.D. His main research interests cover machine learning and image processing. E-mail:About author:CHENG Lang (1995-), master student. His main research interests cover computer vision and image processing. E-mail:862409782@qq.com				
													Supported by:CLC Number:
CHENG Lang, JING Chao. X-ray image rotating object detection based on improved YOLOv7[J]. Journal of Graphics, 2023, 44(2): 324-334.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023020324
| Group | EPSA | SA | E-ELAN | DCL | Params (M) | FLOPs (G) | mAP@0.5 (%) | 
|---|---|---|---|---|---|---|---|
| 第1组 | × | × | × | × | 97.2 | 515.2 | 75.8 | 
| 第2组 | √ | × | × | × | 98.6 | 535.4 | 77.2 | 
| 第3组 | × | √ | × | × | 97.8 | 521.5 | 78.4 | 
| 第4组 | √ | √ | × | × | 99.2 | 541.7 | 79.9 | 
| 第5组 | √ | √ | √ | × | 105.6 | 553.6 | 85.4 | 
| 第6组 | × | × | × | √ | 104.5 | 527.4 | 89.5 | 
| 第7组 | √ | √ | √ | √ | 112.6 | 565.6 | 91.2 | 
Table 1 The results of each improvement and module ablation experiment were compared
| Group | EPSA | SA | E-ELAN | DCL | Params (M) | FLOPs (G) | mAP@0.5 (%) | 
|---|---|---|---|---|---|---|---|
| 第1组 | × | × | × | × | 97.2 | 515.2 | 75.8 | 
| 第2组 | √ | × | × | × | 98.6 | 535.4 | 77.2 | 
| 第3组 | × | √ | × | × | 97.8 | 521.5 | 78.4 | 
| 第4组 | √ | √ | × | × | 99.2 | 541.7 | 79.9 | 
| 第5组 | √ | √ | √ | × | 105.6 | 553.6 | 85.4 | 
| 第6组 | × | × | × | √ | 104.5 | 527.4 | 89.5 | 
| 第7组 | √ | √ | √ | √ | 112.6 | 565.6 | 91.2 | 
| Type | Methods | AP@0.5 (%) | mAP@0.5 (%) | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| PO1 | PO2 | WA | LA | MP | TA | CO | NL | |||
| H | RetinaNet[ |  73.5 | 76.7 | 76.2 | 82.3 | 79.8 | 81.5 | 50.6 | 12.7 | 66.7 | 
| H | FCOS[ |  77.3 | 79.3 | 84.6 | 85.6 | 81.5 | 86.5 | 53.3 | 13.9 | 70.3 | 
| H | YOLOv7[ |  87.6 | 87.4 | 87.8 | 88.9 | 89.9 | 87.9 | 63.6 | 14.5 | 75.9 | 
| R | ReDet[ |  92.6 | 93.5 | 88.8 | 90.9 | 90.7 | 89.8 | 67.5 | 19.7 | 79.2 | 
| R | SCRDet[ |  94.9 | 93.2 | 89.3 | 91.7 | 90.8 | 90.2 | 74.8 | 22.4 | 80.9 | 
| R | R3Det[ |  97.5 | 95.5 | 94.8 | 94.9 | 97.0 | 95.9 | 79.7 | 28.3 | 85.5 | 
| R | YOLOv7-E6R(Ours) | 98.6 | 96.8 | 97.9 | 99.2 | 98.3 | 97.4 | 86.8 | 54.3 | 91.2 | 
Table 2 Comparison of detection accuracy of different rotating target detection algorithms and horizontal target detection algorithms on HiXray dataset
| Type | Methods | AP@0.5 (%) | mAP@0.5 (%) | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| PO1 | PO2 | WA | LA | MP | TA | CO | NL | |||
| H | RetinaNet[ |  73.5 | 76.7 | 76.2 | 82.3 | 79.8 | 81.5 | 50.6 | 12.7 | 66.7 | 
| H | FCOS[ |  77.3 | 79.3 | 84.6 | 85.6 | 81.5 | 86.5 | 53.3 | 13.9 | 70.3 | 
| H | YOLOv7[ |  87.6 | 87.4 | 87.8 | 88.9 | 89.9 | 87.9 | 63.6 | 14.5 | 75.9 | 
| R | ReDet[ |  92.6 | 93.5 | 88.8 | 90.9 | 90.7 | 89.8 | 67.5 | 19.7 | 79.2 | 
| R | SCRDet[ |  94.9 | 93.2 | 89.3 | 91.7 | 90.8 | 90.2 | 74.8 | 22.4 | 80.9 | 
| R | R3Det[ |  97.5 | 95.5 | 94.8 | 94.9 | 97.0 | 95.9 | 79.7 | 28.3 | 85.5 | 
| R | YOLOv7-E6R(Ours) | 98.6 | 96.8 | 97.9 | 99.2 | 98.3 | 97.4 | 86.8 | 54.3 | 91.2 | 
| Type | Methods | OPIXray mAP@0.5 (%) | PIDray | mAP@0.5 (%) | ||
|---|---|---|---|---|---|---|
| Easy | Hard | Hidden | Average | |||
| H | RetinaNet[ |  75.6 | 61.3 | 51.3 | 37.6 | 50.1 | 
| H | FCOS[ |  82.1 | 64.6 | 52.9 | 40.3 | 52.6 | 
| H | YOLOv7[ |  83.7 | 72.3 | 57.4 | 42.8 | 57.5 | 
| R | ReDet[ |  85.4 | 75.9 | 58.3 | 43.7 | 59.3 | 
| R | SCRDet[ |  87.8 | 78.2 | 59.1 | 45.2 | 60.8 | 
| R | R3Det[ |  88.0 | 82.5 | 64.8 | 48.9 | 65.4 | 
| R | YOLOv7-E6R(Ours) | 92.6 | 84.5 | 65.4 | 49.2 | 66.4 | 
Table 3 Comparison of detection accuracy of different rotating target detection algorithms and horizontal target detection algorithms on OPIXray and PIDray datasets
| Type | Methods | OPIXray mAP@0.5 (%) | PIDray | mAP@0.5 (%) | ||
|---|---|---|---|---|---|---|
| Easy | Hard | Hidden | Average | |||
| H | RetinaNet[ |  75.6 | 61.3 | 51.3 | 37.6 | 50.1 | 
| H | FCOS[ |  82.1 | 64.6 | 52.9 | 40.3 | 52.6 | 
| H | YOLOv7[ |  83.7 | 72.3 | 57.4 | 42.8 | 57.5 | 
| R | ReDet[ |  85.4 | 75.9 | 58.3 | 43.7 | 59.3 | 
| R | SCRDet[ |  87.8 | 78.2 | 59.1 | 45.2 | 60.8 | 
| R | R3Det[ |  88.0 | 82.5 | 64.8 | 48.9 | 65.4 | 
| R | YOLOv7-E6R(Ours) | 92.6 | 84.5 | 65.4 | 49.2 | 66.4 | 
																													Fig. 10 Comparison of detection effects of several detection methods and improved YOLOv7 method on HiXray dataset ((a) Portable Charger; (b) Mobile Phone; (c) Cosmetic; (d) Water)
| [1] | 常青青, 陈嘉敏, 李维姣. 城市轨道交通安检中基于X射线图像的危险品识别技术研究[J]. 城市轨道交通研究, 2022, 25(4): 205-209. | 
| CHANG Q Q, CHEN J M, LI W J. Dangerous goods detection technology based on X-ray images in urban rail transit security inspection[J]. Urban Mass Transit, 2022, 25(4): 205-209. (in Chinese) | |
| [2] |  
											 李柯泉, 陈燕, 刘佳晨, 等. 基于深度学习的目标检测算法综述[J]. 计算机工程, 2022, 48(7): 1-12. 
																							 DOI  | 
										
|  
											 LI K Q, CHEN Y, LIU J C, et al.  Survey of deep learning-based object detection algorithms[J]. Computer Engineering, 2022, 48(7): 1-12. (in Chinese) 
																							 DOI  | 
										|
| [3] | 张友康, 苏志刚, 张海刚, 等. X光安检图像多尺度违禁品检测[J]. 信号处理, 2020, 36(7): 1096-1106. | 
| ZHANG Y K, SU Z G, ZHANG H G, et al. Multi-scale prohibited item detection in X-ray security image[J]. Journal of Signal Processing, 2020, 36(7): 1096-1106. (in Chinese) | |
| [4] | 张宇, 马杰, 崔静雯, 等. 融合注意力机制的遥感图像旋转目标检测算法[J]. 激光与光电子学进展, 2022, 59(24): 2415005. | 
| ZHANG Y, MA J, CUI J, et al. Remote sensing image rotation target detection algorithm based on attention mechanism[J]. Laser & Optoelectronics Progress, 2022, 59(24): 2415005. (in Chinese) | |
| [5] |  
											 梁添汾, 张南峰, 张艳喜, 等. 违禁品X光图像检测技术应用研究进展综述[J]. 计算机工程与应用, 2021, 57(16): 74-82. 
																							 DOI  | 
										
|  
											 LIANG T F, ZHANG N F, ZHANG Y X, et al.  Summary of research progress on application of prohibited item detection in X-ray images[J]. Computer Engineering and Applications, 2021, 57(16): 74-82. (in Chinese) 
																							 DOI  | 
										|
| [6] | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2022-08-23]. https://arxiv.org/abs/2004.10934. | 
| [7] | GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. [2022-08-23]. https://arxiv.org/abs/2107.08430. | 
| [8] | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2022-08-23]. https://arxiv.org/abs/1804.02767. | 
| [9] | 朱成, 李柏岩, 刘晓强, 等. 基于YOLO的违禁品检测深度卷积网络[J]. 合肥工业大学学报: 自然科学版, 2021, 44(9): 1198-1203. | 
| ZHU C, LI B Y, LIU X Q, et al. A deep convolutional neural network based on YOLO for contraband detection[J]. Journal of Hefei University of Technology: Natural Science, 2021, 44(9): 1198-1203. (in Chinese) | |
| [10] | 董乙杉, 李兆鑫, 郭靖圆, 等. 一种改进YOLOv5的X光违禁品检测模型[J]. 激光与光电子学进展, 2023, 60(4): 0415005. | 
| DONG Y S, LI Z X, GUO J Y, et al. An improved YOLOv5 model for X-ray prohibited items detection[J]. Laser & Optoelectronics Progress, 2023, 60(4): 0415005. (in Chinese) | |
| [11] | 吴海滨, 魏喜盈, 刘美红, 等. 结合空洞卷积和迁移学习改进YOLOv4的X光安检危险品检测[J]. 中国光学, 2021, 14(6): 1417-1425. | 
|  
											 WU H B, WEI X Y, LIU M H, et al.  Improved YOLOv4 for dangerous goods detection in X-ray inspection combined with atrous convolution and transfer learning[J]. Chinese Optics, 2021, 14(6): 1417-1425. (in Chinese) 
																							 DOI URL  | 
										|
| [12] |  
											 廖育荣, 王海宁, 林存宝, 等. 基于深度学习的光学遥感图像目标检测研究进展[J]. 通信学报, 2022, 43(5): 190-203. 
																							 DOI  | 
										
|  
											 LIAO Y R, WANG H N, LIN C B, et al.  Research progress of deep learning-based object detection of optical remote sensing image[J]. Journal on Communications, 2022, 43(5): 190-203. (in Chinese) 
																							 DOI  | 
										|
| [13] | LI W T, CHEN Y J, HU K X, et al. Oriented RepPoints for aerial object detection[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 1819-1828. | 
| [14] | MING Q, MIAO L J, ZHOU Z Q, et al. Optimization for arbitrary-oriented object detection via representation invariance loss[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. | 
| [15] | YANG X, YAN J C, MING Q, et al. Rethinking rotated object detection with Gaussian Wasserstein distance loss[EB/OL]. [2022-08-23]. https://arxiv.org/abs/2101.11952. | 
| [16] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. [2022-08-23]. https://arxiv.org/abs/2207.02696. | 
| [17] | ZHANG H, ZU K K, LU J, et al. EPSANet: an efficient pyramid squeeze attention block on convolutional neural network[EB/OL]. [2022-08-23]. https://arxiv.org/abs/2105.14447. | 
| [18] | ZHANG Q L, YANG Y B. SA-net: shuffle attention for deep convolutional neural networks[C]// 2021 IEEE International Conference on Acoustics, Speech and Signal Processing. New York: IEEE Press, 2021: 2235-2239. | 
| [19] | ZHANG X D, ZENG H, GUO S, et al. Efficient long-range attention network for image super-resolution[EB/OL]. [2022-08-23]. https://arxiv.org/abs/2203.06697. | 
| [20] | YANG X, HOU L P, ZHOU Y, et al. Dense label encoding for boundary discontinuity free rotation detection[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 15814-15824. | 
| [21] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. Scaled-YOLOv4: scaling cross stage partial network[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 13024-13033. | 
| [22] | DING X H, ZHANG X Y, MA N N, et al. RepVGG: making VGG-style ConvNets great again[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 13728-13737. | 
| [23] | JIANG T T, CHENG J Y. Target recognition based on CNN with LeakyReLU and PReLU activation functions[C]// 2019 IEEE Conference on Sensing, Diagnostics, Prognostics, and Control. New York: IEEE Press, 2019: 718-722. | 
| [24] | CORREIA, ALANA DE SANTANA, COLOMBINI, et al. Neural attention models in deep learning: survey and taxonomy[EB/OL]. [2022-08-23]. https://arxiv.org/abs/2112.05909. | 
| [25] |  
											 张宸嘉, 朱磊, 俞璐. 卷积神经网络中的注意力机制综述[J]. 计算机工程与应用, 2021, 57(20): 64-72. 
																							 DOI  | 
										
|  
											 ZHANG C J, ZHU L, YU L. Review of attention mechanism in convolutional neural networks[J]. Computer Engineering and Applications, 2021, 57(20): 64-72. (in Chinese) 
																							 DOI  | 
										|
| [26] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF International Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7132-7141. | 
| [27] | LI X, WANG X, HU X L, et al. Selective kernel networks[C]// 2019 IEEE/CVF International Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 510-519. | 
| [28] | HE K M, ZHANG X, REN SQ, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 770-778. | 
| [29] | MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[EB/OL]. [2022-08-23]. https://arxiv.org/abs/1807.11164. | 
| [30] | YANG X, YANG J R, YAN J C, et al. SCRDet: towards more robust detection for small, cluttered and rotated objects[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2020: 8231-8240. | 
| [31] | TAO R S, WEI Y L, JIANG X J, et al. Towards real-world X-ray security inspection: a high-quality benchmark and lateral inhibition module for prohibited items detection[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 10903-10912. | 
| [32] | WEI Y L, TAO R S, WU Z J, et al. Occluded prohibited items detection: an X-ray security inspection benchmark and de-occlusion attention module[C]/ The 28th ACM International Conference on Multimedia. New York: ACM, 2020: 138-146. | 
| [33] | WANG B Y, ZHANG L B, WEN L Y, et al. Towards real-world prohibited item detection: a large-scale X-ray benchmark[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 5392-5401. | 
| [34] | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// 2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2999-3007. | 
| [35] | TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2020: 9626-9635. | 
| [36] | HAN J M, DING J, XUE N, et al. ReDet: a rotation- equivariant detector for aerial object detection[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 2785-2794. | 
| [37] | YANG X, LIU Q Q, YAN J C, et al. R3Det: refined single-stage detector with feature refinement for rotating object[C]// The 35th Conference on Association for the Advancement of Artificial Intelligence. Palo Alto: AAAI, 2021: 3163-3171. | 
| [1] | 
														LI Li-xia , WANG Xin, WANG Jun , ZHANG You-yuan. 
														
															 
	Small object detection algorithm in UAV image based on
feature fusion and attention mechanism
 
														[J]. Journal of Graphics, 2023, 44(4): 658-666.
													 | 
												
| [2] | 
														LI Xin , PU Yuan-yuan, ZHAO Zheng-peng , XU Dan , QIAN Wen-hua. 
														
															 
	Content semantics and style features match consistent
artistic style transfer
 
														[J]. Journal of Graphics, 2023, 44(4): 699-709.
													 | 
												
| [3] | 
														YU Wei-qun, LIU Jia-tao, ZHANG Ya-ping. 
														
															 
	Monocular depth estimation based on Laplacian
pyramid with attention fusion
 
														[J]. Journal of Graphics, 2023, 44(4): 728-738.
													 | 
												
| [4] | HU Xin, ZHOU Yun-qiang, XIAO Jian, YANG Jie. Surface defect detection of threaded steel based on improved YOLOv5 [J]. Journal of Graphics, 2023, 44(3): 427-437. | 
| [5] | HAO Peng-fei, LIU Li-qun, GU Ren-yuan. YOLO-RD-Apple orchard heterogenous image obscured fruit detection model [J]. Journal of Graphics, 2023, 44(3): 456-464. | 
| [6] | LI Yu, YAN Tian-tian, ZHOU Dong-sheng, WEI Xiao-peng. Natural scene text detection based on attention mechanism and deep multi-scale feature fusion [J]. Journal of Graphics, 2023, 44(3): 473-481. | 
| [7] | XIAO Tian-xing, WU Jing-jing. Segmentation of laser coding characters based on residual and feature-grouped attention [J]. Journal of Graphics, 2023, 44(3): 482-491. | 
| [8] | LIU Bing, YE Cheng-xu. Fine-grained classification model of lung disease for imbalanced data [J]. Journal of Graphics, 2023, 44(3): 513-520. | 
| [9] | WU Wen-huan, ZHANG Hao-kun. Semantic segmentation with fusion of spatial criss-cross and channel multi-head attention [J]. Journal of Graphics, 2023, 44(3): 531-539. | 
| [10] | XIE Guo-bo, HE Di-xuan, HE Yu-qin, LIN Zhi-yi. P-CenterNet for chimney detection in optical remote-sensing images [J]. Journal of Graphics, 2023, 44(2): 233-240. | 
| [11] | XIONG Ju-ju, XU Yang, FAN Run-ze, SUN Shao-cong. Flowers recognition based on lightweight visual transformer [J]. Journal of Graphics, 2023, 44(2): 271-279. | 
| [12] | CAO Yi-qin, WU Ming-lin, XU Lu. Steel surface defect detection based on improved YOLOv5 algorithm [J]. Journal of Graphics, 2023, 44(2): 335-345. | 
| [13] | ZHANG Wei-kang, SUN Hao, CHEN Xin-kai, LI Xu-bing, YAO Li-gang, DONG Hui. Research on weed detection in vegetable seedling fields based on the improved YOLOv5 intelligent weeding robot [J]. Journal of Graphics, 2023, 44(2): 346-356. | 
| [14] | LI Xiao-bo , LI Yang-gui, GUO Ning , FAN Zhen. Mask detection algorithm based on YOLOv5 integrating attention mechanism [J]. Journal of Graphics, 2023, 44(1): 16-25. | 
| [15] | SHAO Wen-bin, LIU Yu-jie, SUN Xiao-rui, LI Zong-min . Cross modality person re-identification based on residual enhanced attention [J]. Journal of Graphics, 2023, 44(1): 33-40. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||